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Abstract. Machine learning has become a powerful tool for solving differential equations, 

offering numerous advantages over traditional methods. However, the unsupervised training of physics-

informed neural networks (PINNs) can result in non-convex loss landscapes. Extreme learning 

machines (ELMs) address this by fixing internal weights and biases, requiring only the determination 

of output weights. Although ELMs offer benefits over PINNs, their reliance on randomized basis 

functions limits their expressiveness. To enhance expressiveness of the ELMs, we pretrain single-layer 

feedforward neural networks using Gaussian random fields, improving the quality of the basis 

functions. This method, termed PT-ELM, demonstrates that pretrained basis functions in ELMs yield 

accurate solutions for boundary layer problems with better convergence patterns. PT-ELM outperforms 

both traditional ELMs and the recently developed TransNet models. The PT-ELM approach can be 

adapted for solving data and physics driven problems to enhance predictive ability of the neural 

networks. 
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Consider the following singularly perturbed boundary value problem (SPBVP) [1-2]: 

𝒚′′(𝒙) + 𝒏(𝒙)𝒚′(𝒙) = 𝒉(𝒙, 𝒚(𝒙)), 𝒙 ∈ (𝒂, 𝒃)     (1) 

𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽, 𝛼, 𝛽 ∈ 𝑅 

where ℎ(𝑥, 𝑦(𝑥)) and 
𝜕ℎ

𝜕𝑦
≥ 0 are continuous. We study on the boundary layer challenge for approximate 

solutions of (1). Let us consider the single layer neural network approximation (NNA) function for 

solving (1) [3] 

𝑦𝑁𝑁(𝑥) = ∑ 𝛾𝑖𝜎(𝑤𝑖𝑥 + 𝑏𝑖)𝑁
𝑖=1        (2) 

 

where 𝑁 is the number of hidden neurons, 𝜎(𝑥) is the activation function (we take 𝜎(𝑥) = 𝑡𝑎𝑛ℎ(𝑥)) 

and the parameters 𝛾𝑖, 𝑤𝑖 and 𝑏𝑖 are weights and biases of the network layers. One efficient way of 

solving the SPBVP (1) with NNA is randomly fixing the weights (𝑤𝑖) and biases (𝑏𝑖) of the ith hidden 

neuron by assuming randomized basis functions and solving the least-square problem for 𝛾𝑖. This 

approach is known as the extreme learning machine and various problems have been addressed with 

this approach [3, 4].  

 

 One limitation of the ELM is the poor approximation performance of the randomized basis functions 

for diverse set of problems. Zhang et al. proposed an efficient way called TransNet for constructing 𝑤𝑖 

and 𝑏𝑖 values from the Gaussian and uniform distributions, respectively [5]. They theoretically showed 

that the TransNet approach for single layer networks improves the expressibility of the neural networks. 

In this study, we propose pretrained extreme learning machines (PT-ELM) with single-layer 

feedforward neural networks to improve the approximation capabilities of the basis functions. We train 

the neural network basis functions by approximating the set of Gaussian random fields (GRF) [6]. We 

generate 𝑀 random discrete map from the discrete input set (𝑥𝑖)𝑖=1
𝐾 ∈ [0,1] to (𝑦𝑖)𝑖=1

𝐾 ∈ [0,1] with the 
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GRF generator. Our aim is to train the single-layer 𝑁-neuron neural network (2) to best approximate 

the GRF realizations with varying correlation lengths. 

 

 We have the neural feature set 𝑃𝑀
𝐿  consisting of globally supported basis functions 𝜎(𝒘𝑥 + 𝒃)𝑖 for 

𝒘 ∈ 𝑅𝑀×1 and  𝒃 ∈ 𝑅𝑀×1. From the approximation theory perspective these basis functions span 

𝐶[𝑎, 𝑏] and we need to find best practical ones by training 𝒘 and 𝒃 . To solve this problem, we derive 

a mixed training approach using the genetic algorithm and the least squares approximation to find 

optimal probability distributions to generate 𝒘 and 𝒃 vectors randomly.  By training the neural feature 

space with this hybrid approach, the basis functions 𝜎(𝒘𝑥 + 𝒃)𝑖 are constructed by minimizing the 

approximation error to the 𝑀 discrete GRF data. The   

 

 We illustrate how the PT-ELM outperforms the ELM and TransNet in solving the SPBVP having 

boundary layers with numerical examples. We comparatively analyze how the PT-ELM performance 

is affected from the neural network architecture, number of GRF maps, GRF correlation lengths, and 

the optimization conditions. We also provide further directions for solving the partial differential 

equations with the PT-ELM approach. 
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