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The stability of the anisotropic collisionless plasma layer to small disturbances
in the MHD description is studied based on moment equations obtained
from the Vlasov kinetic equation taking into account the heat flow along the
spatially shearing flow. To find the complex spectral parameter that determines
the growth rate of instability, on the base of the obtained wave equation, the
boundary value problem is solved using WKB approximation for the case of
a smooth hyperbolic velocity profile. A general integral dispersion equation,
based on these solutions is obtained. This equation describes all types of body
and interface instabilities in the presence of heat flow along the magnetic field,
well studied for infinite stationary and homogeneous anisotropic plasma. It is
shown that reducing the layer width greatly enhances the mirror instability, and
strongly suppresses the oblique fire-hose instability. We limited ourselves here
to study how the spatial gradient of the plasma flow affects the properties of
an aperiodical oblique fire-hose instability in a limited layer. It was found that
the spatial gradient in flow velocity greatly enhances this instability. With a
narrowing of the shearing layer width and an increasing of the velocity gradient,
the body hose modes transform into surface Kelvin-Helmholtz modes existing
on the interface between the two parts of the flow with the different velocities.
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1. INTRODUCTION

In collisionless plasmas, the mechanism of dissipation of the energy contained
in macroscopic scales is still a matter of considerable debate (Cranmer et al. 2015)
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[9]. The primary mechanism is considered to be the turbulent transfer of energy
from macroscales to microscales (to scales such as the ion gyro-radius and ion
inertial length), resulting in the conversion of energy into heat through kinetic
processes (e.g. Marsch 2006) [42]. The transition between the scales occurs in
a cascade (e.g.Loureiro & Boldyrey 2017) [37], and on kinetic scales processes
such as wave-particle resonances (e.g. Gary et al. 2016) [20] and various plasma
processes in coherent structures come into play(e.g. Chasapis et al. 2017; Jain
et al. 2021) [10, 33]. The turbulent cascade mechanism is often used to ex-
plain plasma heating under cosmic conditions, such as coronal heating and solar
wind generation(e.g. Kiyani et al. 2015; Verdini et al. 2019) [33, 34]. Turbu-
lence scales can be conditionally divided into cascade stages: energy-containing
macroscales, inertial acceleration scales, and resonant dissipative scales. We are
interested in the onset of turbulence formation (instability of the ground state
of the plasma) at macroscopic scales, which contain the bulk of the energy. In
the case of low-collision plasmas, the theory is complicated by the fact that rar-
efied hot plasmas in the presence of a magnetic field become highly anisotropic
relative to the direction of the external magnetic field, such as in the solar wind.
Pressure anisotropy can cause additional instabilities, both in micro and macro
scales (e.g. Vedenov & Sagdeev 1958) [56], which tend to bring the plasma into a
thermodynamic equilibrium state. Micro-instabilities play an important role for
macroscale energy redistribution (e.g.Verscharen et al. 2019) [58]. However, the
observed anisotropies, for example, in the solar wind (e.g.Hellinger et al. 2006)
[25], are remarkably stable and long-lived (Bale et al. 2009, Matteini et.al 2013)
[2, 38] making them difficult to explain.

The main reason for the development of turbulence is plasma instabilities,
i.e., instability can be thought of as the onset of turbulence. The generation and
growth of instability are driven by free energy contained in the spatial gradient
of the physical parameters of the medium or the non-Maxwellian distribution of
plasma particles. The most common source of free energy in nature, including in
space, is flows with a velocity gradient. Shear flows of fluid or plasma are usually
characterized by a flow velocity gradient across the direction of flow. The sim-
plest example is when plasma slips over a more static environment(e.g. Kivelson
& Chen 1995) [36]. Examples include interaction regions that arise between fast
and slow flows in the solar wind (Bale et al. 2009, Bruno & Carbone 2013) [1,2],
the interface between the solar wind and a planetary magnetosphere (Hasegawa et
al. 2004) [23], the surface of coronal mass ejections (CME) (Foullon et al. 2011)
[16], and the surfaces of various astrophysical jets(Hamlin & Newman 2013) [29].
Under such conditions, Kelvin-Helmholtz instability (KHI) can be easily excited
by free energy flows with a velocity gradient. If fluid or plasma is considered an
incompressible medium, then any value of transverse shear (velocity jump) causes
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KHI instability (e.g., Chandrasekhar 1961) [6]. The magnetic field is known to
stabilize this instability. However, when the shear becomes larger (usually the
threshold is determined by the Alfvén speed in the direction of the flow), insta-
bility occurs again. KHI can cause some phenomena that are directly observed.
For example, under certain magnetic field configurations, solar flux can pene-
trate the magnetosphere of planets due to the magnetic reconnection effect(e.g.
Sisti et al. 2019) [51] transferring momentum, mass, magnetic flux, and energy.
(e.g.Delamare M. et al. 2024) [11]. Interestingly, there are possible situations
where newly born KHI vortices, before transitioning to a nonlinear regime and
decaying, can transfer energy into the magnetic field and, through the reconnec-
tion mechanism, heat the plasma of the corona. (Telloni et al 2022) [52].

Many studies are devoted to the theory of KHI development, both in the MHD
approximation (e.g.Walker 1981; Faganello et al. 2008) [17,59] and in the kinetic
description (e.g. Pritchett & Coroniti 1984; Henri et al. 2013) [28, 48]. If the
plasma is collisionless and the width of the shear layer is comparable to the ion
scales (in the solar wind at a distance of 1 AU, proton inertial length = 140 km,
proton gyration radius = 160 km), then the kinetic description is preferable, as
seen in Earth’s magnetopause.(e.g.Faganello & Califano 2017) [18]. Shear flows
are studied mainly in two aspects. If the KHI threshold is not yet reached, then
the flow is stable to small perturbations, and various types of MHD waves can
propagate in such flows. However, stable waves are strongly affected by shear. For
example, the phase mixing mechanism can generate small scales in the direction
of the flow velocity gradient (e.g., Pucci & Malara 2014) [46], which can transform
ordinary Alfvén waves into kinetic Alfvén waves (Hollweg and Kaghashvili 2012)
[31], the dissipation of which can become one of the main heating mechanisms in
collisionless plasma. The shear can cause interactions and energy transformation
between different types of waves (Pucci et al. 2016) [45]. The fluctuations on
smaller scales lead to wave dissipation (e.g., Mok & Einaudi 1985; Hollweg 1987;
Kaghashvili 2007; Pucci et al. 2014) [31, 35, 39, 46] which may also contribute
to the appearance of anisotropy in the distribution function (e.g., Pezzi et al. .
2017) [47]. In the MHD description at such small scales, taking into account Hall
effects becomes important (Vàsconez et al. 2015, Maiorano et al. 2020) [41,57]. If
the instability threshold is met, then Kelvin-Helmholtz instability (KHI) occurs.
This means that vortex mixing of the shear layer is generated, which in a nonlin-
ear stage, turns into turbulence (Blasl et al. 2022;Hasegawa et al. 2020 ) [3, 30].
When the shear layer width is on the order of the ionic inertial scale, dispersion
effects can strongly modify the KHI. (Chac’on et al. 2003) [5].

In the kinetic description, both for wave propagation and KHI, the construc-
tion of the initial stable state of shear flows is a separate, rather complex task
(e.g. Guzzi et al.2021) [21]. For the MHD description, this difficulty does not
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exist. Therefore, the averaged fluid description of a collisionless plasma, despite
its disadvantages (the inability to describe in detail important kinetic effects such
as resonant interactions of particles and waves, Landau damping, and others),
also has advantages for the case of large-scale and low-frequency phenomena. For
example, in the (Wang & Hau 2003) [60] it has been shown that the basic prop-
erties of fire hose instabilities (incompressible parallel and compressible inclined)
obtained from the kinetic theory are not lost in the fluid approach. The intro-
duction of sufficient viscosity and resistivity into the MHD model also leads to
results consistent with the kinetic description for the nonlinear decay stage of the
process under consideration.

In a homogeneous anisotropic plasma, classical MHD (shear) Alfvén waves be-
come unstable if the condition p∥ > p⊥ +B2/4π or β∥ − β⊥ > 2 (hose instability)
is met. These incompressible modes have the maximum instability growth rate
when is propagating in parallel. The second type of hose mode is compressible and
has maximum instability when is propagating obliquely (Hellinger & Matsumoto
2000) [26]. This instability has a higher growth rate than the classic hose modes.

In another limit of pressure anisotropy p∥ < p⊥another type of plasma in-
stability arises - obliquely mirror instability. In this limit, kinetic resonance ion
cyclotron instabilities are also possible, which do not arise in the MHD descrip-
tion. However, for mirror modes, the instability threshold in the MHD description,
taking into account heat flow, exactly coincides with the low-frequency kinetic re-
sults, β∥ < β2

⊥/(1 + β⊥). Our results (Dzhalilov et al. 2011) [14] are identical to
the one based on the linear Vlasov theory (Hau and Sonnerup.1993) [24]. Note
that the CGL MHD model (Chew et al. 1956) [4], which admits double-adiabatic
laws, does not correspond to the results of the linear Vlasov kinetic theory (e.g.,
Hasegawa 1975) [22].

In the case of a tangential discontinuity between flows with different veloci-
ties, only surface modes arise, including KHI. If the transition from one flow to
another has a finite width and a smooth velocity profile (more consistent with
real situations), then in this transition layer, in addition to surface modes, body
waves are also possible, and they can interact with each other. Issues of the effect
of finite width of the transition layer with different velocity profiles in isotropic
MHD have been studied, (Ray & Ershkoyich (1983); Miura (1982); Choudhury
(1986) ; Uberoi (1986), and in Choudhury & Patel (1985)) [7,8,40,49,54] and the
plasma anisotropy were considered within the framework of the CGL MHD model.
However, if we consider a layer of anisotropic plasma with a finite width, shear
flow, and heat flux, then the following questions arise: 1) If the KHI threshold is
not reached, how are MHD waves and associated classical instabilities (fire hose,
mirror, and others) modified? 2) If KHI occurs, how is it modified by shear and
how do other instabilities and waves change? Our work is devoted to studying
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these issues. In this work, we focused on how the second type of fire hose instabil-
ity (compressible oblique modes) is modified by the shear flow (finite width) of an
anisotropic plasma, taking into account heat flux along the magnetic field. Sim-
ilar questions for classical fire hose modes (incompressible parallel modes) in an
infinite medium with a linear velocity gradient were studied using the asymptotic
method in (Uchava et al. 2020) [53].

Section 2 presents MHD equations that describe the fluid behavior of a colli-
sionless plasma taking into account the heat flux along the magnetic field. Based
on these equations, a general wave equation is obtained for linear disturbances in
a plasma layer with shearing in the flow velocity. In section 3, for a smooth hyper-
bolic flow velocity profile, a boundary value problem is solved based on the WKB
approximation. The resulting integral dispersion equation describes the growing
rates of all types of instabilities that arise in a shear layer with a finite arbitrary
width and with the arbitrary transverse flow velocity gradient. In section 4, the
limiting transition to the homogeneous flow, but in a spatially limited plasma
layer, is separately studied. Changes in instability grows rates depending on the
layer width have been studied. In section 5, oblique compressible aperiodic hose
modes in a spatially limited shear layer are studied. Modification of instability
depending on the width of the transition layer and the velocity gradient are the
main subjects of research. Concluding remarks are provided in section 6.

2. THE BASIC WAVE EQUATIONS IN THE FLUID DESCRIPTION

For the fluid description of a collisionless anisotropic plasma regarding to the
direction of the external magnetic field, the 16-moment set of equations may
be used which is complete (in comparison of CGL approximation) in the sense
that these equations include the evolution of heat fluxes along the magnetic field.
[43,50] For the one component (ion) plasma, these equations are given as follows:

dρ

dt
+ ρ divv = 0, (1)

ρ
dv

dt
+∇

(
p⊥ +
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44



AJAz: 2024, 19(1), 40-60 MHD instabilities in shear flows...
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dB

dt
+Bdivv − (B · ∇)v = 0, (7)

divB = 0, (8)

where ρ denotes the density, p∥ and p⊥ the parallel and perpendicular gas pressure,
B the magnetic field, v the bulk velocity of the plasma, g the gravitational accel-
eration, hB = B/B is a unit vector of magnetic field, and d/dt = ∂/∂t+ (v · ∇)

denotes the convective derivative. Here S∥ and S⊥ are the heat fluxes along the
magnetic field due to parallel and perpendicular thermal kinetic motions of ions,
respectively. If the heat fluxes are neglected, i.e., when S∥ = 0 and S⊥ = 0, we
obtain with Eqs. (1)-(4), (7) and (8) a closed system of equations that is called
the CGL (Chew-Goldberger-Low) equations, see the pioneering work by Chew et
al. [4]. Given the 16 -moments set of Eqs. (1)-(8), one can consider including the
heat fluxes to obtained a more complete form compared to the CGL equations.

In our calculations, Eqs. (1)-(6) are simplified versions of 16-moment equa-
tions, including both the ionic and electronic components of the plasma (Ramos
2003) [50]. Since the plasma is collisionless, electron and ion fluids are weakly
coupled. In conditions me/mi ≪ 1, the hydrodynamic behavior of the plasma is
essentially determined by the ionic component. Equations (1)-(6), as in the case
of the CGL MHD model, describe the dynamics of the ion plasma, while the role
of electrons is reduced only to the implementation of the plasma quasi-neutrality
condition.

We consider plane-parallel geometry of the z-directed MHD plasma flow with
shearing in x-direction, i.e. the equilibrium velocity v0 has a component only
in the z-direction, which varies on the x-axis, v0 = (0, 0, V0(x)). Let the back-
ground magnetic field B0 = const is directed along the z-axis. We assume also
that the background state with non-zero heat fluxes is homogeneous (the gravi-
tational acceleration, g = 0, and the quantities ρ0, p⊥0, p∥0, B0, S⊥0, S∥0 are con-
stant).

We consider the stability of the such system with respect to linear perturba-
tions of all the physical variables, according to the form f = f0 + f ′(x, y, z, t),
where the perturbation f ′(x, y, z, t) ∼ F (x) exp [i (kyy + kzz − ωt)]. So we Fourier
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decompose the perturbation with respect to y, z, and t, as all the coefficients in
the differential equations are only depending on x. Here, ω is the wave frequency
and ky, kz are the wave numbers which means that the wave vector k lies in the
(y, z) plane. After linearization of the set of Eqs. (1)-(8), we obtain

ρ′
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ωzBx +B0kzvx = 0, (17)

ωzBy +B0kzvy = 0, (18)

∂Bx

∂x
+ ikyBy + ikzBz = 0. (19)

Inserting (15) and (16) into (13) and (14), we can write

p′⊥ = p⊥0

a1(x)

a0(x)

Bz

B0
+ p⊥0

a2(x)

a0(x)
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ρ′

ρ0
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Here p∆ = p∥0 − p⊥0, V
′
0(x) = ∂V0/∂x, and ωz = ω −kzV0(x) is the

Doppler shifted frequency. We can reduce the system of Eqs. (9)-(19) to one
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single second-order differential equation by using the obvious relations between
the physical variables

vx = − ωz

B0kz
Bx, (22)

vy = − ωz

B0kz

ikyA

βA

∂Bx

∂x
, (23)
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∂x
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ρ0
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∂Bx

∂x
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p′⊥ =
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p⊥0
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∂Bx
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, (28)

p′∥ =
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b0

p∥0
B0
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∂Bx

∂x
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Substituting all these relationships and thus eliminating variables, we obtain

∂

∂x

(
A(x)

∂Bx

∂x

)
− βA(x)Bx = 0, (30)

where

A(x) =
βAβ⋆

k2yβ⋆ + k2zβA
, (31)

and
βA = β − ᾱ− 1

η2
, β⋆ = β0 − α

a2
a0

β1,

β0 = α
a1 + a2

a0
+ β, β1 =

b0ᾱ− b1 − b2
b0/η2 − b2

,

(32)

while the coefficients a0,1,2 and b0,1,2 are determined as

a0 = 1− η2, b0 = 1− 3η2,

a1 = 1− 2γη − ᾱη2, b1 = 2γη(α− 2)− 2,

a2 = 1 + 2γη − η2, b2 = 3 + 4γη − 3η2.

(33)
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In the above equations, the following dimensionless parameters were used for the
basic unperturbed physical quantities and the indexes zero are dropped for sim-
plification of the notation:

α =
p⊥
p∥

, ᾱ = 1− α, β =
B2

4πp∥
=

v2A
c2∥

, c2∥ =
p∥

ρ
,

η =
c∥kz

ωz
, γ∥ =

S∥

p∥c∥
, γ⊥ =

S⊥
p⊥c∥

, γ = γ∥ = γ⊥.

(34)

The case where γ = γ∥ = γ⊥ is a simplified approach. Here, c∥ denotes par-
allel sound speed, vA is the Alfvén velocity, α the anisotropy parameter, γ the
background heat fluxes parameter, and β is inversely proportional to the plasma
beta (β = 2/βpl). We also denote θ for the wave propagation angle relative to the
magnetic field, i.e., kz = k cos θ, ky = k sin θ, and after denoting cos2 θ ≡ ℓ, we
can write kz = k

√
ℓ and ky = k

√
1− ℓ, and let k > 0.

3. EIGEN OSCILLATIONS OF THE LAYER WITH SHEARING FLOW

The coefficients of obtained second order ordinary differential wave equation
Eqs.(30) are variable, and they are complex functions of V0(x). Furthermore, the
velocity profile V0(x) is still an arbitrary function of the x-coordinate. In the case
when two plasma flows adjoin, there arises a transition layer with a finite thick-
ness between them. The thickness of the transition layer is determined by the flow
velocities and physical parameters in each flow. In the simplest case, to mimic
this situation we consider an analytical velocity profile given by the hyperbolic
function of

V0(x) =
V02e

σx + V01e
−σx

eσx + e−σx
, σ ⩾ 0. (35)

Here V0(−∞) = V01 and V0(+∞) = V02 are the limit velocities and let
h = V01/V02 ⩾ 1, V0(0) = (V01 + V02)/2 = V̄0 is the average of the two ve-
locities. In the Eqs.(35) the σ parameter characterizes the thicknesses of the
transition layer L. Figure 1 shows schematically the various profiles of V0(x) for
different values of σ. As the parameter σL > 0 increases, the width of the tran-
sition layer between the two flows sharply decreases and becomes a discontinuity
(σL ≫ 1) between the velocities V01 and V02. For the small σL ≪ 1 the width of
the transition layer becomes very large.

Let’s introduce the next notations
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Fig. 1. Schematic representation of MHD plasma shearing flow. Different line profiles
correspond to different values of σL = σL in (35).

y(x) =
Bx

B0
, ξ(x) =

ω − kzV0(x)

c∥kz
, βA(x) = α+ β − 1− ξ2,

β∗(x) = β + 2α+ 2α2 · ξ
4 + 2γξ3 + 2γ2ξ2 − 5ξ2 − 6γξ + 3

(ξ2 − 1) (ξ4 − 6ξ2 − 4γξ + 3)
.

(36)

Then we can write the Eqs.(30) as

d

dx

(
βAβ∗

k2yβ∗ + k2zβA

dy(x)

dx

)
− βAy(x) = 0. (37)

As noted in the Introduction, we will be interested in the excitation of waves and
instabilities due to the free energy of a flow with a gradient. As we showed earlier
in (Ismailli et al.2018) [32], waves can grow due to the energy of the flow if these
waves are in resonance with the flow, i.e. when the phase velocity along the flow is
close to the average flow speed, ω ∼ kzV̄0. Therefore, let ω = kzV̄0(1 + Ω), where
Ω is the spectral parameter to be determined. Then ξ(x) = M [Ω + ∆tanh(σx)],
where M = V̄0/c∥ is the Mach number, ∆ = (h − 1)/(h + 1) is the shear rate.
Note that 0 ≤ ∆ ≤ 1 and hence, ∆ = 0 corresponds to a uniform flow (V01 = V02)
and ∆ = 1, if the plasma slips over a more static environment (V02 = 0).

Now let’s move on to the dimensionless independent variable τ = x/L in
Eq.(37). Designating σL = σL, k̄ = kL and so ξ(τ) = M [Ω + ∆tanh(σLτ)] we
have (

Py′
)′ −Qy = 0, (38)
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where y′ = y′(τ) and

P(τ) =
βAβ∗

(1− l)β∗ + lβA
, Q(τ) = k̄2βA. (39)

Our main goal in the next step is solving the boundary value problem based on
the Eq. (38), to find the complex spectral parameter Ω with Ωi = Im(Ω) ̸= 0. For
such a problem, we can use the fact that in the real integration axis τ for the co-
efficients (39) it is possible to satisfy the conditions P(τ) ̸= 0 and Q(τ) ̸= 0.This
situation makes it possible to find WKB (Wentzel-Kramers-Brillouin) approxi-
mate analytical solutions of the second-order equation (38). So, for the complex
P(τ), Q(τ) ⇒ C2(I) functions assuming Re(QP ) ≥ 0 we can write the leading
expansion term of WKB solutions, e.g. in (Fedoryuk M.1983) [19] as

ỹ1,2 =
e±iS(τ)

√
w

, w =
√
PQ, S =

∫ τ

τ0

√
−Q

P
dτ. (40)

The deviation of exact solutions y1,2 from WKB ones ỹ1,2 is determined by the
right-hand side of the following expression∣∣∣∣y1,2ỹ1,2

− 1

∣∣∣∣ ≤ TWKB = 2
(
e2µI(τ) − 1

)
< 1, (41)

where
µI(τ) =

∣∣∣∣∫ τ

τ0

|µ|dτ
∣∣∣∣ , µ(τ) =

1

8w5

[(
Pw′)′w − 5

4
P
(
w′)2] . (42)

Two independent solutions of the Eqs. (38) with accurasy of (41) can be repre-
sented in the form

y(τ) =
1√
w

(
C1e

iS + C2e
−iS
)
, (43)

where C1,2 = const to be determined from the boundary conditions. Let’s limit
the region of integration along the x axis within −L ≤ x ≤ +L. This means that
the shearing layer is located in this area (see in the Fig.1). Let’s limit the layer on
the left τ = −1 and right side τ = +1 with hard boundaries, which corresponds
to natural conditions of y(±1) = 0.

Let τ0 = 0, u(τ) =
√
−Q/P and

S+ =

∫ 1

0
udτ, S− =

∫ 0

−1
udτ, I = S− + S+ =

∫ 1

−1
udτ. (44)

From the boundary conditions of y(±1) = 0 we get that exp(2iS−) = exp(−2iS+)

or
sin(I) = 0; I = nπ, n = 0,±1,±2, · · · (45)
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This is the desired dispersion equation for the eigen oscillations of an anisotropic
plasma layer with shear flow. Introducing the notation z = tanh (σLτ),
ξ± = M(Ω±∆z) and b = tanh (σL) let us present this equation in the form∫ 1

0

(√
f(ξ+) +

√
f(ξ−)

)
dτ = λn, (46)

or ∫ b

0

√
f(ξ+) +

√
f(ξ−)

1− z2
dz = σLλn, (47)

where

f (ξ) = −(1− l)β∗(ξ) + lβA(ξ)

β∗(ξ)
, λn =

nπ

kL
,=

λ⊥n

2L
. (48)

The λn parameter is the ratio of the wavelength λ⊥ in the (y-z) plane (k2 = k2y+k2z
and k = 2π/λ⊥) to the geometric width (2L) of the plasma layer with a flow that
is a multiple of the number of unevenly located nodes n of the eigenfunctions
along the x axis. If we denote the scale of fluctuation structures caused by shear
flow along the x-axis as λx = 2L/n, then λn = λ⊥/λx.

The eigenfunctions taking into account (44) and (45) can be represented in
the form

y(τ) = (−1)n+1C

w
sin

(∫ 0

−1
u(τ)dτ −

∫ 0

τ
u(τ)dτ

)
, −1 ≤ τ ≤ 0 (49)

y(τ) =
C

w
sin

(∫ 1

0
u(τ)dτ −

∫ τ

0
u(τ)dτ

)
, 0 ≤ τ ≤ 1 (50)

where C = const.

4. INSTABILITIES IN HOMOGENEOUS FLOW

Let us briefly consider the well-known fire-hose and mirror instabilities of
an anisotropic plasma (in the domains of α < 1 and α > 1, correspondingly
) with a uniform flow, so that we can compare them with modified instabili-
ties due to shearing of the flow. For a homogeneous flow ∆ = 0, and therefore
ξ+ = ξ− = MΩ = Ω∗, f(ξ+) = f(ξ−) = f(Ω∗). Then dispersion equation (47)
reduces to f(Ω∗)− λ̄2

n = 0, where λ̄n = λn/2. This is an 8th order polynomial on
the spectral parameter Ω∗:

c8Ω
8
∗ + c7Ω

7
∗ + c6Ω

6
∗ + c5Ω

5
∗ + c4Ω

4
∗ + c3Ω

3
∗ + c2Ω

2
∗ + c1Ω∗ + c0 = 0. (51)
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Here

c0 = 6(λ̄2
n − l + 1)α2 − 6(λ̄2

n − l/2 + 1)α− 3(βλ̄2
n − l + β),

c1 = −12γ(λ̄2
n − l + 1)α2 + 8γ(λ̄2

n − l/2 + 1)α+ 4γ(βλ̄2
n + β − l),

c2 = 2(λ̄2
n − l + 1)(2γ2 − 5)α2 + 18(λ̄2

n − l/2 + 1)α+ 9(βλ̄2
n − 2l/3 + β),

c3 = 4γ[(λ̄2
n − l + 1)α2 − 2(λ̄2

n − l/2 + 1)α− β(λ̄2
n + 1)],

c4 = 2(λ̄2
n − l + 1)α2 − 14(λ̄2

n − l/2 + 1)α− 7(βλ̄2
n + 2l/7 + β),

c5 = 4γl, c6 = (2λ̄2
n − l + 2)α+ βλ̄2

n + 6l + β, c7 = 0, c8 = −l.

Note that this dispersion equation for an infinite medium L = ∞, therefore
λ̄n = 0, was studied in detail in (Dzhalilov and Kuznetsov,2013) [12] and the
obtained results were compared with the results of low-frequency kinetics. The
good agreement between the thresholds and growth rates of low-frequency in-
stabilities obtained in the kinetic and MHD approaches indicates that the MHD
model based on the 16-moment fluid equations is quite applicable for the hydro-
dynamic description of collisionless plasma.

Here first of all we want to show how the spatial limitation of the plasma
layer (−∞ < L < +∞) along the x-axis can influence to the known instabili-
ties growing. Note that in this case the classical incompressible fire-hose modes
are separated (see in the Eq. (30): the term βA = 0 describes the frequency of
Alfvén oscillations). Other modes are described by the Eq. (51), coefficients of
which depend on the parameters α, β, γ, l and λn. We will simplify the problem,
eliminating the influence of heat flux, γ = 0 and fix the magnetic parameter,
let β = 0.1 (weak magnetic field). For an infinite layer width, λn = 0, the de-
pendence of the instability growing rates of aperiodic in the moving fluid frame
modes (Ωr = Re(Ω) = 0) - oblique fire hose and mirror instabilities on the wave
propagation angle l and on the anisotropy parameter of α is shown in Fig. 2.
These parameter dependence growing rate results are well known.

To clarify the role of flow layer width limitation, let us take two typical cases
from the figure 2: α = 0.5 for the fire-hose mode and α = 1.4 for mirror modes.
As it follows from Figure 3, with increasing parameter λn, the region of existence
of fire-hose modes sharply narrows and it disappears if λn > 1. The opposite
situation arises for mirror modes: with increasing parameter λn, the region of
occurrence of mirror instability on parameter l expands and covers all possible
propagation angles, 0 ≤ l ≤ 1. With increasing λn, the growth rate of mirror
modes increases to the maximum asymptotic value (in the case under consider-
ation, (MΩi)max = 0.53), i.e. the instability of mirror modes becomes stronger
than fire-hose modes.
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Fig. 2. Dependence of the growing
rates of quasi-parallel fire hose (blue
lines) and quasi-perpendicular mirror
(red lines) instabiliies from l = cos2(θ)

in different α (numbers at curves) for
λ̄n = 0. With decreasing of anisotropy
α → 1 both instabilities fade out

Fig. 3. Dependence of the growing
rates of fire hose (blue lines) and mirror
(red lines) instabiliies from l = cos2(θ)

in different λ̄n ̸= 0 (numbers at
curves). For the mirror modes α = 1.4

and fire-hose modes α = 0.5 are cho-
sen as the typical examples.

5. OBLIQUE FIRE-HOSE MODE INSTABILITY IN SHEARING FLOW

Now let us consider how the instabilities change when the flow is sheared. In
this case, two additional parameters, ∆ and σL, are added to the problem for
which the rather difficult integral dispersion Eq. (47) must be solved. In this
work we will restrict ourselves to oblique fire-hose modes only. We fix the plasma
anisotropy parameter α = 0.5, the magnetic parameter β = 0.1, the propagation
angle parameter l = 0.9, heat flux parameter γ = 0 and the Mach number M = 5

(supersonic flow). The dependence of the fire-hose instability growing rate on ∆

for various values of λn and σL is shown in figures 4 and 5.
It is characteristic that with the appearance of the slightest shifting in ve-

locity, the instability intensifies sharply and reaches a maximum. For the small
λn a minor shift is sufficient to enhance the instability. A similar picture is ob-
tained when changing the σL parameter. At small scales of the velocity gradient
(σL → 0), the flow is almost uniform and the instability is weak. As the gradient
increases, instability sharply increases.

In the figures 6 and 7 we show the results of the dependence of instability
growth rate of fire-hose modes Ωi on the parameter λn for the different given ∆

and σL parameters values. These examples cover both a very wide plasma layer
(kL ≫ 1) and a narrow layer (kL ≪ 1). We see that the hose modes that arise
in a wide layer as body waves disappear as the layer width decreases and goes to
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Fig. 4. The dependence of instability
growing rate Ωi of fire-hose modes on
the shearing rate of plasma supersonic
flows ∆ at different values of λn (num-

bers at curves) when σL = 1.

Fig. 5. The dependence of instability
growing rate Ωi of fire-hose modes on
the shearing rate of plasma supersonic
flows ∆ at different values of σL (num-

bers at curves) when λn = 1.

Fig. 6. The dependence λn = nπ/kL

from the instability growing rate MΩi

of fire-hose modes at the different val-
ues of the shearing rate of M∆ (num-
bers at curves) for the case of σL = 3

and γ = 0.

Fig. 7. The dependence of instabil-
ity growing rate MΩi of fire hose
modes on the λn at different values
of σL (numbers at the curves) when

M∆ = 1.5

zero. Note that the discontinuous case corresponds to L → 0 and σL ≫ 1.

5.1. On the validity of the WKB solutions

In this work, we solved the boundary value problem based on the WKB solu-
tions (40). Taking into account that the coefficients of the equation (37) are the
ratio of polynomials, and the eigenfunctions are expressed by complex irrational
expressions, it is important to show the smoothness of the eigenfunctions and the
domain of definition of the obtained results. In this issue, the main is that the

54



AJAz: 2024, 19(1), 40-60 MHD instabilities in shear flows...

sought and found eigenvalues (oscillation frequencies) are complex, and are found
such values at which the divergence of terms in the WKB expansion is excluded.
Proof of this is Figure 8, where for the found eigenvalues (for four cases), the
dependence of the TWKB deviation of the WKB solutions from the exact one
(41) is calculated as a function of n = 0, 1, 2, · · · numbers. As can be seen, the
curves are smooth, and the region of validity TWKB < 1 of the illustrated results
is located in the region of larger n. These cases in the Fig.8 are:

1) γ = 0, σL = 3,Ωr = 0,MΩi = 1.0604, λn = 2.1203;
2) γ = 0, σL = 3,M [Ωr,Ωi] = [0.9007, 0.1], λn = 2.7724;
3) γ = 0.7, σL = 3,M [Ωr,Ωi] = [0.5, 0.3419], λn = 2.2291;
4) γ = 0.7, σL = 0.55,M [Ωr,Ωi] = [0.10201, 0.3248], λn = 1.4473.
These eigenvalues have been found in the parameter values of:

M = 5,∆ = 0.3, α = 0.5, β = 0.1 and l = 0.9.

Fig. 8. The range of applicability of the obtained results based on the WKB solutions,
TWKB < 1, for four cases of eigenvalues (see the text).

6. CONCLUSIONS

In this work, we considered a layer of anisotropic collisionless plasma with a
finite width. It was assumed that a homogeneous plasma flows along the mag-
netic field has a transverse velocity gradient. The stability of the plasma layer
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to small disturbances in the MHD description was studied on the basis of mo-
ment equations obtained from the Vlasov kinetic equation taking into account
the heat flux along the flow. A wave equation is derived, which is a second-
order ordinary differential equation with complex variable coefficients. To solve
the boundary value problem and find the complex spectral parameter that deter-
mines the growth rate of instability, the WKB approximation was used to find
asymptotic solutions for the case of a hyperbolic velocity profile. A general in-
tegral dispersion equation, based on these solutions is obtained. This equation
describes all types of instabilities in the presence of heat flux along the magnetic
field, well studied for infinite stationary anisotropic plasma (Dzhalilov,Kuznetsov
,2008,2011,2013;Dzhalilov,Ismailli 2023). [12–15] These instabilities, such as par-
allel and oblique firehose modes, mirror modes, KHI modes, and others in an
infinite medium and velocity discontinuities, arise under certain conditions deter-
mined by the plasma parameters.

Note that the case considered here, the spatially limited plasma layer with a
transverse gradient in flow velocity, is a more realistic case that occurs in various
cosmic situations. Therefore, studying the effect of plasma confinement on known
properties of instabilities, modification of them, and the interaction of various
modes due to a shearing of flow velocity in the presence of a heat flux are poorly
studied problems. The resulting general dispersion equations allow us to move to
known limiting cases - into an infinite medium without a shearing in velocity and
an extremely narrow layer with a jump in the velocity (discontinuity limit). The
first important result is that the spatial limitation of the plasma greatly affects
the instabilities of the mirror and oblique fire-hose mode instabilities. Namely,
reducing the layer width greatly enhances the mirror instability, and strongly sup-
presses the hose instability. Further, we limited ourselves here to study how the
spatial gradient of the plasma flow, characterized by two σL and ∆ parameters,
affects to the properties of oblique hose instability in a limited layer. It was found
that the spatial gradient in flow velocity greatly enhances this instability. With
a narrowing of the layer width (L → 0) and an increase of the velocity gradient
(σL ≫ 1), the body hose modes transform into surface KH modes existing on the
discontinuity surface between the two parts of flow. Note that the results pre-
sented here are only for aperiodic modes (Re(Ω) = 0) without taking into account
the influence of heat flux. For the same fixed anisotropic plasma and magnetic
parameters (α and β) and propagation angle relative to the magnetic field (l),
in addition to aperiodic instabilities, periodic instabilities also arise (Re(Ω) ̸= 0,
Im(Ω) ̸= 0), as a result of interaction with other modes (most likely with KH
modes, see (Dzhalilov,Ismailli ,2023) [15]. These results are not included here.

In future works, the mirror and other shear instabilities will be considered. It
is especially interesting how the KHI is modified as a results of interaction with
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other modes, and what happens during the transition from a jump in velocity
(discontinuity) to a plasma layer with a finite width and with a transverse
gradient. In conclusion, we note that the facts of increase of hose instability
due to the velocity shearing are important for the general theory of turbulence
generation in anisotropic space plasmas.
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