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Triangular Representation of the Solution to the
Schrodinger Equation with an Additional Linear
Potential
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Abstract. This work considers the Schrodinger equation with an additional linear po-
tential on the whole axis. For a potential with a finite first moment, we prove the validity
of the triangular representation of the Jost solution with the condition on +oco. Estimates
for the kernel of the triangular representation are obtained.
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1. Introduction and main result

Let us consider the Schrodinger equation of the form

—y" +zy + q(z)y = My, —00 < T < 400. (1)
where ¢ () is the real potential which satisfies the condition
+oo
| s ela@)]de < . e
—0o0

The inverse spectral problem for equation (1) was studied in [1]. Furthermore, on
the basis of the formal triangular representation of the solution of equation (1),
the main integral equation of Gelfand-Levitan was obtained. Later in [2], an accu-
rate justification of the validity of the above mentioned triangular representation
(see also [3]) was given for the class of potentials

+oo
q(z) € CW (=00, +00) ,/ (14 |z]) g (x)] dx < cc.

—00
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However, the proof of Lemma 1.3 in [2], which plays an essential role in the proof
of the main result cannot be considered satisfactory. Indeed, it follows from the
integral equation (1.8) in [2] that

0 K )
7}(((92770) = 14 (%) -

)IN{ €0, 1) dn—
foo oV ( 5(527(?75 77) ( (g 77) dedn.

The last equation shows that to establish the asymptotes % =0 (ng) and

% 0 (né) (see formula (1.15) in [2]), additional restrictions on functions
q (&) and ¢’ (&) when & — oo are required. It should be noted that such ques-
tions also apply to the work [3], where the existence of a triangular representation
of the solution to equation (1) is established for another class of potentials. More-
over, in addition to the above shortcomings, the arguments presented in [2, 3] are
not sufficient to assert the validity of the triangular representation of the Jost
solution of equation (1) in the case of a potential ¢ (x) from the class (2).

In this paper, we prove the validity of the triangular representation of the
Jost solution of equation (1) for potentials from the class (2). The results of
this work also justify the spectral problems for equations (1) studied in [1, 2, 3].
Moreover, the main result (see the theorem below) is also valid in the case of
a complex potential from the class (2). Note that various spectral problems for
equation (1) have recently been actively studied by many authors (see [4, 5, 6, 7]
and references therein).

Let us formulate the main result of our work. Let o (2) = [° |q (t)| dt, 01 () =
L2 o (t)dt, fo(x,\) = Ai(x — X), where Ai () is the Airy function (see [1, 2, 3]
of the first kind.

Theorem 1. If the potential satisfies condition (2), then the equation (1) has a
solution f (xz,\) that can be represented as follows:

Fan) = foe)+ | T K () fo (8, V) dt. (3)

For the kernel K (x,t), the following relations hold:

1 x+t
K (2,1)] < 50

)et (z) , (4)
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2. Proof of the Theorem 1

Without loss of generality, we will assume that x > 0. Consider the function

R(&,n,%,m0) = Jo (2\/(77(2) —n?) (£ - 50))

in domain 0 < 7 < 179 < & < £ < o0, where Jy(z) is a Bessel function of
the first kind. The following properties of the function R (§,n,&o,n0) have been
established in [2]:

OR OR
Rl <1, |82 < b
9%R
o

< ino (€ - 50)
2(¢-¢)%,

We precede the proof of the theorem with the following lemma.

1 (g =),

<K -1 |5 <}

(6)

1
< iMo-

a§0<9770

Lemma 1. If the function q (x) satisfies condition (2), then the integral equation

U(éOvUO):i A R(§,07§0a770)Q(f)d5+
o 70
+/§0 dﬁ/o U (€.n) R(Em, €0,m0) (€ — ) dn )

has a unique solution in the domain 0 < ny < &y. Additionally, U (&0, m0) satisfies
the estimate

U (€o,m0)] < 50 (60) €@ (8)

Proof. We will use the method of successive approximations. Let

Uo(&0,m0) = / R(&,0;&0,m0)q(&)dE,

&o
70

Un(0,m0) = / de [ Unr(€m)al€ — )R(E 60, mo)dn

&o 0
Taking into account the above estimate |R| < 1, we have

oo m) < 5 [~ 1R(E0:60m) | (@] de < 5 | la(©)1d = 3o (&)

Further, we find that

U (450,"70\<f dff [Uo (§,m)] - la (§ — "7)\ 7 (&, m; &o,m0) dn <

2f§0 dé [ o (&) la (€~ 77)|d77§2f§ d5f870|Q§—77)\d77§
280) 2 g fO”O g (€ —m)| dnp =25 [2dg £ g o)l da<

"<f°> Jorag &<, la(a)|da < §° & o (& —mo)dg = Z52 oy (€ — o).

IA I/\ \/\
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Let now

(0 (€0 —m0))" "
(n—11

1
|Un—1(0,m0)| < 50(50)
Then we have

|U (5077]0 | < f&o d§f0?70 ‘q 5 77)7'(5 n, 507770) n—l(&ﬁ)’dn <

&) I %Ig |2 (@)| dadg <
%U 50 f&o o ?n 77({)' ff 710 |4 (a) |dad§ <
= _5 o f&) (01 En 77(; doy (€ — %U (&) (Gl(ﬁon—!no)) _

Hence it obviously follows that the series U (§o,m0) = >, - Un (0, 10) converges
absolutely and uniformly, and its sum is a solution to equation (7) and U (&, 70)
satisfies the inequality (8).

The lemma is proved. <

Suppose now that the function ¢ (z) is continuously differentiable on the whole
axis and satisfies the condition

+o0o
/ [2% |q (z)| + | ¢ (2)|] dz < oo. (9)

—0o0
Differentiating equation (7) and taking into account (6), (10), we find that the

function U (&, no) is twice differentiable for £y > 7y and the relations

&0 I

U (Lo,m0) _ _Eq (&) + % IOO AR(£,0,60,m0) q (&) de—
o 50 OR(Eom0.m) (10)
q(bo—mU (Eo.m)dn+ [° [ T ga =" a(§—n) U (&) ddn.

OU0m0) — 1 [0 ORED0M0) g (¢) d + [ q (€ — o) U (&,m0) dé+

o oo OR( 50,7707577 o (11)
+f Jeo T a (€ —n) U (€, m) dédn
are true. Using (6), (8), from the last equations we find that
‘8(]%506%) + 54 (% ‘ < [2q ()] ds + So (60) e &) [ g (s)|ds+

+1 (5 — %) 30 (¢ )Ulgo "°)f (€ - Uo)d§<

< @3 (&) + 20 (&) eo1(&om0) { (50—770)+%°<71 (50—770)}7
(12)
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0, , ) o — 00
\%\_’” JE2 (€= &) la ()] e + 3o (€0) e €0mm) [ g (s)|ds-+

11061 (60— m) fnof&) (€ —=80) o (&) g (§—mn)ldidn
= Wg (§o)+ 50 (o) 7807 )ar (€ — o) +

+770 o1 50 770 fﬁ()f g £0 fg ’q ‘ds‘q(g n)‘dfdn (13)
< Roy (&) + 50 (fo) o1&0=m0) g (€9 — 110) +
+%"e"1(50"’70> fém Sl J& (s =€) la ()] ds g (& — )| dédn
< a1 (§0) + 50 (o) €7 070 (&9 — o) +
+"7f)6‘71(5°_77°)01 (§0) o1 (&0 — no) -
Further, differentiating equations (10) and (11), we obtain
& Ufgfgmo) - %q’ (50) %8R(£Oégfom)q(§0)+
+1 foo 0?2 R(£0£0ﬂ70) f770 / 50 _ (‘507 )dn+ (14)
g (& — n) BUgggmd o M q (& —n) U (€0,n) dn
i Jey G (€~ mU (€ mdein
2 o 2 [e.9]
19) Ua("f](),”]()) 2 o 0 R(fag 507770) j‘ ,(f o ,,70) U (57770) d€+
+ S g (6 — mo) Pgemlge 4 f°° a“0#0““(1(5 —m) U (&,mo)de+ (15)
I o PG (€~ ) U (€, m) dedn,
Moreover, we have
2
9 2o ééf)%“,;g(’) = 210U (€0,m0) =
00 2
=3 o [P R IRt 0)] a(€) de- "
o de f30 [[ZHEEn — 2oR (¢o,m0,€m)| | U (€ m) a (€ — m) dn
—q (&0 —10) U (§0,m0) = —q (€0 — 10) U (€05 70) -
From the last equations, we get
2 4 ()
\“@Sﬁg) + 3¢ ()] < B 60) + Mo () + o (€0) e @M [ 1! ()] ds+
+3 [*U (€0) + la (€0)| + o (o) €1 E07m) [U (60— m0) + %o (0 — HO)H
ey la (s 5)| ds + % Lo (€9) e 60 ) [ - la(s)] ds+
+ &30 (§0) e Em) [ g ()] ds = g (&) + o (€0) + § [ B (&) +

+1g (£o)| + 0 (o) e &™) | <§o—no)+loal (60— m0)] | & (60 = m0) +

[k (€0)en @) + e (60) e @] o (=) +
Ho (@) e @ [ 1 ()| ds

go—mo
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’32U(§0,770)

)| < [0 (6 ~ &) la (€) € + § [ (€ — €0) la ()] de+
+10 (&) e71(So=m0) Jor o ld (s)] ds+
+ [ 01 (€0) + S0 (0) €& ™)g (€ — 170) +
+10e71(E0=m) g (£9) 0y (€0 — 10)] 0 (§0 — 1m0) +
+2eo1(&0=m0) [5 (¢ — &) 0 (£) |q (€ — no)| dE+
e &0—m) [0 [ (¢ 6)2 5 () g (¢ — )| dedn-+
qer @) i J(E ~ &) (€)la (€ — )l dédn <
< (€= &) la(©)|de+ 1 for (€= &) la (&) dé+
30 (o) et [ g/ (s)] ds+
+ 2oy (&) + 30 (&) e &0 M)g (& — 1) +
e &=m)gy (&) o1 (S0 — m0)] o (S0 — mo) +
+ e 7oy (&) o (€0 —mo) +
+8 e Q0=m) gy (€9) 01 (o — m0) +
Lt ©=m)gy (&) o1 (€0 — o) »

‘32U (€05 m0)
9000
Since the function ¢ (z) is continuously differentiable and satisfies the condition
(9), the relation xlgglo q(z) = 0 holds. Moreover, since { > 19, the condition

1
< oo (§o) €707 4 5 14 (&0 —m0)| o (&) e?1(&0=m0),

no — +oo leads to relation £y — +oo. From this and the last three inequalities
it follows that under the condition 1y — +00, the following relations hold:

oU (&,m0) | 1 B oU (&,m0)
T ok + 54 (§0) = o(no) , o o (o), (17)
9*U (&o,m0) |, 1, gy QU (Soomo) 9y OPU (S0,m0)
67584‘?1 (50)—0(770)787778—0( o)aw—o(l)-
(18)
Further, setting 7o = 0 in (7), we obtain
1 [teo
U0 =5 [ aee (19)

It follows from the last relations and (8), (16), (19) that the function K (z,t) =

U (HTI, t_Tx) is twice continuously differentiable for ¢ > x and satisfies the rela-

tions

OK (z,t) 0K (,1)

o2 o2 (x—t+q(z)) K(z,t)=0, (20)
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+o0
K (2,7) = ;/ ¢ (1) dt, (21)
K (2, 8)] < %a (i“’) 71 @), (22)

In addition, by virtue of (17), (18), we find that if = is fixed, then for t — +o0,
the following relations are true:

0K (zx, 0K (zx,
2ot =o(t), #5rt =o(1)

Tt 5 (531) = o (1), TG+ 30 (551) = o ().

Since the function fy (x,\) = Ai(xz — \) and its derivative for all A\ satisfy the
asymptotic equalities

(23)

3
2

—5w , & — +00, (24)

ol

TN ~ ——g 37 1 zie
0 ’

1
NG NG

it follows from (20), (23), (24) that the function

7f(/)($7/\)’\“_

fz,A) = fo(z,\)+ +OOK (x,t) fo(t,\)dt

xT

is a solution to equation (1). Moreover, the kernel K (z,t) satisfies conditions
(21), (22).

Now let only the condition (2) be satisfied, so that the functions U (£,7) and
K (z,t) may lack second derivatives. In this case, the kernel K (x,t) satisfies
the estimate (14). Moreover, it follows from (10)-(13) that the function U (§,n)
and thus K (z,t) have the first partial derivatives with respect to both variables
almost everywhere; moreover, if = is fixed, then the following relations hold for

e OK (z,) 1 [w+1) - T+t
oz +2q< > >_O<(t x)m( 2 >>

0o (55) 00 (5))

Let us construct a sequence of continuously differentiable functions ¢, () such
that the relations

+oo
[ el an () - )] do =

oo —+o00
/ xQ\qn(:U)]dx<oo,/ ‘q;(x)‘dx<oo

—00
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hold. Without loss of generality, we can assume that a sequence of functions
qn () also converges to a function ¢ (z) almost everywhere (otherwise we would
have to choose some subsequence of this sequence). Then, as shown above, the

equation
1 [t
U o) =5 [ R0 m)a. () de+
o
+oo 70
+ /5 d [ U (€. (€. o.m) an (€~ n) (25)

has a unique solution satisfying relations similar to (8) and (11). Using equations
(7) and (25), we find that

V) (&0,m0) = § fo ™ R(£,0,&,m0) pn (§) dE+
+ [0 dE [ R(&m, €0,m0) o (€ = 1) U (&,m) dn (26)
Jer ™ de Jo° R(&,m, Eo,m0) pa (€ = m) VI (&,7) dn,

where py (€) = ¢a (€) —q(&), VW (&) = U™ (&,1) — U (&1). To handle the
equation (26), we use the method of successive approximations. Let

+0o0o +00
o (6) = /5 D ()] ds, prn (€) = L on (5) ds.

n 1 +oco
om0 =5 [ R0 6w € de

+00 70
+/€0 ds/o R (€., €0,10) pn (€ — ) U (€.1) dy

(n) oo [ (n)
Vv (¢o,m0) = /5 [ R o (€= VT (€ mdn k= 1.2...

Similar to above, it is established that

[Ve™ (€0,m0)] < n (60) + 50 (60) p1n (€0 — ).
o 2
[V o, < o €0) pin (60 — ) + 2o () LS =0
o1, (S0 — m0))" [o1,n (60 = m0))* "

n 1 1
Vi 00| < on (60) PRSI 4 o (60)
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Therefore, for the sum V™ (&,m0) = 332, Vk(n) (&0,m0) we obtain

—_

1
‘V(") (507770)‘ < 5Pn (&) ePrnlEomo) 4 50 (&) [em,n(&rno) - 1} )

The last estimate shows that the sequence of functions U (&0,m0) converges
uniformly in the domain &y > 19 > 0 to the function U (&p,n9). Obviously, the last
statement remains true for a sequence of functions K™ (z,t) = U™ (52, 5%)
in the domain ¢ > x, the limit function of which is K (z,t). Hence it follows that
the sequence

In (x7)‘) = fo (x7 )\) + /OO K(n) (%,t) Jo (t7 )‘> dt,

uniformly converges to the function

F@X) =fen+ [ E@ohe

for z > 0 and for A, taken from any finite region.

In a similar way, differentiating equation (26), we find that the sequences of

AU ™ (€0,m0) U™ (£0,m0)
g, and T

, respectively. It follows that the sequences of functions

OK™ () K™ (a,t) . K (x,t) OK(z,t)
9 ot converge almost everywhere to functions =, =57, re-

spectively. By virtue of (24) and Lebesgue’s theorem on the passage to the limit
under the integral sign, the sequence

functions

AU (£0,m0) U (£0,m0)
3500 * and 87;)0 -

converge almost everywhere to the functions

Fuw ) = fi @) = KO o) o e+ [ 8D gy an,
converges to the function
P = RN K@ fw+ [ 2 g 0y a

for any « and A. On the other hand, the functions f, (x, \) satisfy the equations

—" 4+ an(2)y =Ny

as shown above. Passing to the limit in these formulas as n — oo, we come
to the conclusion that the function f (z, ) must satisfy the equation (1). This
completes the proof of the theorem. |
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