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Continuous Relay Fusion Frame in Hilbert Spaces
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Abstract. In this paper we introduced the concept of continuous relay fusion frames in
Hilbert spaces and we define the dual frames for continuous relay fusion frames. Finally
we study the perturbation problem of continuous relay fusion frames.
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1. Introduction

The concept of frames in Hilbert spaces has been introduced by Duffin and
Schaffer [3] in 1952 to study some deep problems in nonharmonic Fourier series.
After the fundamental paper [2] by Daubechies, Grossman and Meyer, frame
theory began to be widely used, particularly in the more specialized context of
wavelet frames and Gabor frames.

Continuous frames were proposed by G. Kaiser [7] and independently by Ali,
Antoine, and Gazeau [1] to a family indexed by some locally compact space
endowed with a Radon measure. Gabrado and Han [5] called these frames as the
ones associated with measurable spaces.

Let H, L be separable Hilbert spaces and let B(H, L) be the space of all the
bounded linear operators from H to L (if H = L, we write B(H)). Let (Q, 1) be
a positive measure space.

If W C H and V C L are subspaces, then we let my € B(H) and Py € B(L)
denote the orthogonal projections onto the subspaces W and V', respectively.

In this section we briefly recall the definitions of continuous frames and con-
tinuous fusion frames in Hilbert space.
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Definition 1. /8] Let H be a complex Hilbert space and (€2, 1) be a measure space
with positive measure . A mapping F : QQ — H is called a continuous frame with
respect to (0, ), if

(1) F is weakly-measurable, i.e., for all f € H, w — (f, F(w)) is a measurable
function on 2.

(2) there exist constants A, B > 0 such that
AllfI? < /Q |(f, F(w))[*du(w) < B||f|?, Vf e H. (1)

The constants A and B are called continuous frame bounds. F is called a tight
continuous frame if A = B. The mapping F is called Bessel if the second inequal-
ity in (1) holds. In this case, B is called the Bessel constant. If u is a counting
measure and 2 =N, F' is called o discrete frame.

Definition 2. [/ Let {Wy,}weq be a family of closed subspaces of Hilbert space
H and (0, 1) be a measure space with positive measure i and v : @ — RT. Then
{Ww, Vw }wea s called a continuous fusion frame with respect to (2, ) and v, if

(1) for each f € H, {mw,, f}weq is strongly measurable and v is a measurable
function from Q to RT.

(2) there are two constants 0 < C, D < oo such that
ClSIP < [ vilmwe fIPautw) < DISIE. vf € .

where myy,, is the orthogonal projection onto the subspace Wy,. We call C' and D
the lower and the upper continuous fusion frame bounds, respectively.

2. Continuous relay fusion frame in Hilbert spaces

Definition 3. Let { Ky }weq be a sequence of separable Hilbert spaces and {Wy, }weq
be a family of closed subspaces in H for each w € Q. Let {Vy 4 }veq, be a fam-
ily of closed subspaces in K, . Let {auys}tweoven, be a family of weights, i.e.
Qyp > 0 for each w € Q, v € Qy, and let A, € B(H, K.,) for each w € Q. Then
{Waw, Viv,w, Vww fweven, 18 said to be a continuous relay fusion frame, if

(1) for each f € H, {Awf}weq is strongly measurable.

(2) for each f € H, {mw, f}wea is strongly measurable.
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(3) for each f € Ky, {Py, , flweaveq, is strongly measurable.

(4) there exist constants 0 < A < B < oo such that
Py, Awmw, fI*dp(v)du(w) < B||f|?, Vf e H,

AllfI? < /Q /Q a
(2)

where Py, , is the orthogonal projection onto the subspace Vi, . We call A and
B the lower and the upper continuous relay fusion frame bounds, respectively.

Definition 4.

</ / @Vw,v) — {{fw,v}wEQ,UEQwa fw,v S Vw,v’/ / wa,v”2 < OO},
QJQ 12 QJQy

with inner product given by

U {uwurm) = /Q /Q v G0 dpa(v),

1s a Hilbert space with respect to the pointwise operations.

Lemma 1. Let R be a Bessel relay-fusion sequence in H with Bessel bound B.
Then, for each sequence { fuw}tweven, With fue € Vv,

// QW gy frowdpe(v)dpe(w)
QJQ,
COnverges.

Proof. Let

F = {fwnweanvea, € (/Q /Qw @Vw,v>12

9= [ [ Cwnmw A fusdn(0)ditw).
QJQy

and

Then we have
ol = | /Q /Q oy A% fro o) da(0)

= sup
All=1

[ v fasdutw)iuto) 3l

= sup
[[A]]=1
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< sup ( L[ s
[|h]|=1 QJQw

( N OézQU,UHPVw,UAwWth!Qdﬂ(v)dﬂ(w)>
QJQy
< VBl

“dp(o)auv))

<

Definition 5. Let R be a relay fusion frame for H. Then the analysis operator
for R is defined by

Th : H— (/ / @wa) , with TR(f) = {aw,vPVwﬂ,AwWWwf}weﬂ,veQwaVf € H.
QJQy 12

We call the adjoint T}, of the analysis operator the synthesis operator of R.

Proposition 1. Let R be a relay fusion frame for H. Then

Tis = [ [ womwAfuodi(0)du(w), v{fw,v}weg,vegwe( [ eavw,v)
Q JQuw Q JQy

12

Proof. Let g € H and f = { fuw }wea.veq, € <fQ wi @Vw,v> . Then
2

l
<TR(g)a f> = <{O[U/,UPVw7vA’wﬂ-ng}wEQ,UEQMa {fw,v}wEQ,UGQw>
— [ | tg.0uamn A fuaddn(o)du(w)
Q JQy,
= (9, Tr(f))-

Theorem 1. The following assertions are equivalent:
(1) R is a relay fusion frame for H.
(2) Tr is injective and has a closed range.

Proof. (1) = (2) We have for each f € H:

/Q /Q ol P s Ay £ dp(0)dps(w) = | Tr 1.
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First we prove that Tk is injective. Let f € H be such that T f = 0. Since
2 2

we have f = 0.
We now show that Tk has a closed range. Let {Tr(x,)}neny € Range(Tr) be
such that lim, . Tr(2,) = y. For n,m € N, we have

Al = 2m|)? < | Tr (20 — zm) ||

Since {Tr(zn)}nen is a Cauchy sequence in H, we have ||z, — zn| — 0, as
n,m — oo. Therefore the sequence {z,}nen is Cauchy and hence there exists
x € H such that x,, — x as n — 0o. And we have

ITR (20 — 2)1* < Bllzn — .

Thus || Trxn — Trz|| — 0 as n — oo implies that Trax = y. So the range of T is
closed.
(2) = (1) This is obvious. <

By composing Tz and T5, we obtain the frame operator for R.

Definition 6. Let R be a relay fusion frame. A frame operator Sgr for R is
defined by

Saf =TiTaf = [ [ owumw APy mw, o)),

Theorem 2. R is a Bessel relay fusion sequence in H with bound B if and only
if the map

{Fow hucaoca, — /Q /Q QT A Foowdpt(0)dpa(w)

15 a well-defined bounded operator from <fQ fQ @Vw,v) to H and its norm is
less or equal to /B.

Proof. First assume that R is a Bessel relay fusion sequence for H with
bound B. By Lemma 1 the [, [, ouwmw, A}, fupdp(v)du(w) is convergent.
Thus 7% ({ fw,v }weq,ven,, ) is well defined. A simple calculation as in Lemma 1
shows that T3 is bounded and ||| < v/B.

For the opposite implication, suppose that T} is well defined and ||T% || < VB.
Then

/Q /Q 02, | Pavo Ay, £ 2dpu(0)dps(aw) =
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- /Q / o2, (Ao P Ay £ f)d(v)dja(w) =

= <T7>5,{aw7UPVw,vAw7erf}WGQ,UGQw’ f> S

2

< </Q/Q agu,vHPVwmAwTerﬂ2dp(11)du(w)> ‘T;‘QHHJCH’

so we have

/Q /Q o2, | P A £IPdp(o)du(w) < 1T £ < VB £
<

Theorem 3. Let R be a relay fusion frame with bounds A and B. Then the
frame operator for R is bounded, positive, self-adjoint, invertible operator on H
with
Alg < S < Bly.
Proof. S is bounded as a composition of two bounded operators:

ISrIl = TR TRl = I1T%|* < B.

Since
Sy = (TxTr)" = TjTr = Sg,

the operator Sy is self-adjoint. The inequality (2) means that
AlIFI* < (Srf. f) < BISIP,¥f € H.

This shows that
Alg < Sr < Bly,

and hence Sg is positive, invertible operator on H. |

Theorem 4. Let R be a relay fusion frame for H with frame operator Sg. Then
we have for all f € H

f = /Q/Q a%y,vS;ngWwAZ;PVw,UAwWWwfdu(’l))du(/w)

— [ | ke APy Aum, SR du(o)dut).
QJQuw
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Proof. As Sy is invertible, for all f € H we have

f=8z'Srf= /Q/Q anS;leWwAZPVw,UAwWWwfd,u(v)d,u(w),

and

f= SRSﬁlf = /Q/ a,%v’UWWwA*wPVw’vAwwWwS{zlfd,u(v)d,u(w).

Theorem 5. Let
R = {Wwa Vw,v, aw,v}weﬂ,veﬂw

and

’ ’

! / !
R = {Wun Vw,v? Aw? aw,v}wEQ,’UEQw

be two Bessel relay sequences for H with bounds B and B, respectively. Let Tr
and T be their analysis operators such that T;;, Tr = Iy. Then both R and R’
are relay fusion frames.

Proof. We have for all f € H

I£I* = (TR f, Trr f)?
< TR fIPI T £11?

([ [ et tumv. p1Pautoiu))
QJQy

([ a2y Aumg fPauwau))
QJQu ’
< ( L[ ai,vIIva,UAMWwfllgdu(v)d/ﬁ(w)>B'||f||2-

Thus )
< [ kP, Aumw, £ Pdue)duw).
Q JQy

Similarly we obtain a lower bound for R'. <

3. Duality of relay fusion frames
Lemma 2. [6] Let A€ B(H) and V C H be a closed subspace. Then

7TvA* = WvA*WW.
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3.1. Global continuous relay dual of continuous relay fusion frames

Let R be a continuous relay fusion frame for H. We consider global continuous
relay space K = (fQ GBKw)l2 and let Fx be a frame for IC, where every K, is
a local continuous relay space. We use Sz, to denote the frame operator for
IC. Let m = S};Vw,v and I/X\; = }éPVwmAw. We now prove that R =
{Wa, %:,,Eﬂ,vw,v}wegwegw is a continuous relay fusion frame for H and we
call R the global continuous relay dual of continuous relay fusion frame of R.

Theorem 6. Let R be a continuous relay fusion frame for H. Then R is a
continuous relay fusion frame for H, for all f € H,

f = /g;/Q a%U’USélﬂWwEU*]\\;WWwfd'u(l})d'u(w) —

:// o2, W N Ay, S=" Fp(v)dp(w).
olo, R

Proof. For each f € H, we have

L[ adallPary S5iPe Aumv fPduto)dute) =
QJQy e

:/Q/Q s IS7 L Py, Awtw,, [P dp(v)du(w) < ||SELIP B £

On the other hand, we have

[ [ atallPe v, S5 P, Aumw, £1Pdue)dute) =
QJQy S

- /Q/Q s, |17 Py, Awmw,, flPdp(v)dp(w) >

1 A
> o2 ——— || Py,  Awmw, flIPdp(v)dp(w) > ———|f||
Joh, ot e
Further, since Sz is invertible, for all f € H we have
-1 -1
f=558f=5z55"1
— [ ]k Sgtmw A P R, fdto)dto)
Q w w,v

- /Q /Q ai,vsﬁlwwwA*vaw,vS};PS;’;VM,US;;va?vAwwWw Fdu(v)du(w)
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/ / QoS5 W, AL P, SECSECPY,  Awmw, fdu(v)du(w)
= [ [ atsgim R R fdut)dutw)
= [ e R K S5 o)),
oJa, R

3.2. Local continuous relay dual of continuous relay fusion frames

Let ‘71”\1, = SileU and /i\ = Sile +Aw, where S, denotes the frame
operator with respect to Ky, for each w €  and we call every S, local continuous
relay frame operator. We now prove that R = {Wi, Vi v,Aw, Qv fweQveQ, 18
also a continuous relay fusion frame for H and we call R the local continuous
relay dual of continuous relay fusion frame of R.

Theorem 7. Let R be a continuous relay fusion frame for H. Then R is a
continuous relay fusion frame for H and, for oll f € H,

/= / / 02085 T My My, fdpu(v)dpa(w) =
QJQy

= / / 02w Mo N, S fdp(v)dp(w).
QJQy

Proof. For all f € H we have

L[ aball P, Sa P Aum o) di) =

Z/Q/Q Vool P M, fIPdp(v)dp(w) < max{ |15, "} BII £

On the other hand, for each f € H we have

L[ aball P, Sa P A P duo)di) =

= /S:Z/;2 ai7vHS?ZlPVw’UAw’]erszd,U(U)d/,L(w) Z

1
> / / o2, L Py A, FIPdp(0)d(w) >
QJQuw HSwH
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1
>m1n AllfII.
{HS |r2} 171

Since Sz is invertible, for all f € H we have
-1 -1
f:Sﬁ Sﬁf:SﬁSﬁ f
— [ ] kSt A P R duto)du)
= /Q/ a%u,’USrf;\'lWWwATUPVw,US;IPSEIX/“),US’lzlpvw,vAwFWwfdu(v)du(w)
— [ ] @k Sgtmw A R, fdu(o)du(w)
ala, =R
_/ / ol 1w, Ao Rumw, Sz fdu(v)du(w).
ala, R

3.3. Continuous canonical dual of continuous relay fusion frames

Now let Ww = S{zl W, and Aow = Ay, Sfal, where Sy is the frame operator
for R. We prove that R = {Ww, Vo, Aow, Qv Fwe,veQ,, 18 also a continuous relay
fusion frame for H and we call R the continuous canonical dual of continuous
relay fusion frame of R for H.

Theorem 8. Let R be a continuous relay fusion frame for H. Then R is a
continuous relay fusion frame for H.

Proof. We have for all f € H

L[ aallPr Aumw Sg g e, AP dn(w)du() =

= [ ]t P Aumgs fIPdute)dntu) <
QJQy

< ISz 1*BIfII*
On the other hand, we have

2

1Al = \ (f / o mw Ao Py, Awmy, S5 Fdp(v)du(w), f)

2

‘ / / APrs Awr, Sz F P Aw, f)dia(0)dpa(w)
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é </Q/Q a12,1),v||P‘/;u,1;Aw7erSR17'[‘S7_21Wwf||2d'u(v)d'u(w)> %
" </sz/9 a?"v””PwaAwWWwf\Qdu(v)du(w) <

< ([ [ adullPe dumve g m g, APdudute) ) 11
Therefore,
Life < 2 ol Py A SHt *dp(v)d
I = U o |1 Py o AT, SR T g1y, fII7dp(v)dpa(w).
Q J, =
<
Theorem 9. Let R be a continuous relay fusion frame for H with frame operator
Sr and let R be the continuous canonical dual of continuous relay fusion frame

of R with frame operator Si. Then SrSyp = Ig and TRTy = Iy and, for all
feH,

f = /Q/ a%u,vWWwA:LPVw,vaTFWwfd/,l,(v)d,u(w) —

= / / afumﬂ'm; Aow*Pw,vAwWWwfdﬂ(v)dﬂ(w).
QJQy b
Proof. We have for all f € H
—1 * —
SRS, [ = SR/Q/Qw ozi,’vﬂ'S;WwSR TFWwAwPVw,vAuﬂTWwSR17T57—11WwfdM(U)dM(w)
:SR// afu,vszlwWwAfuPVw’vAwﬂWwS;zlfdu(v)du(w)
Q JQu

:/Q/Q Oé2wyU7TWw Z}PVw,uAwWWwSrl_zlfd/j,('U)dﬂ(w)

= SRS f
=f

and
T%Tﬁ = T;i ({Olw,vpvww A’LU7TWw Sﬁlﬂ-sRlef}wEQWEQw>

=T ({aw,vPVw,quWWw Snlf}wea,veﬂw>
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= TrTrRSH'f
= 1.

The last assertion of the theorem follows from the previous steps of the proof. <«
Theorem 10. Let R be a continuous relay fusion frame with continuous canoni-

cal dual of continuous relay fusion frame R. Then, for any gw., € Vo satisfying
f=Ja wi ai,v”WwAfugw,vdﬂ(mdﬂ(w); we have

Joh.

/ / 02, | Py sty f112dpu(o) ()
4 /Q /Q G — 02, o Py Mg 2 dpa(o)dp(w).

Proof. For each f € H, we have

/ / 02| Py Ky fPdp(o)dp(w) = (Spf, 1) = (f, SgLf) =

= [t g S5 ) =
//w oGy PN, Sp fydu(v)dp(w) =
// (G0 Pupumy, fdp(v)du(w) =

/ / P Ny fr Guo) da(0)dia(w).

<

Example 1. Let R be a continuous relay fusion frame for H and Sg denote the
frame operator of R. We have for each f € H

_1 _ 1
1£1? = (Sp>SrSR> 1, f)
_1 _ 1
y /Q / 02, S i A% P Awmw Sig? Fdu(o)dp(w), f)

_1
= /Q/Q a%”’vHPVw’”AwWWwSRQfHQd,u(v)d,u(w)
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1
2 1
= /Q / O[w,’UHPVw,UAwWWwSR27TS—
w

R

%Wwf||2du(v)du(w)-

1 1
S0, {SEWuw, Vipwy AwTw, SRy Qo fwe,ve, 18 a Parseval continuous relay fusion
frame for H.

Theorem 11. Let R be a continuous relay fusion frame for H with continuous
relay fusion frame operator Sg and let QQ € B(H) be an invertible operator. Then
R = {QWuy, Vipw, Ay Qap v fweve,, 15 a continuous relay fusion frame for H
with continuous relay fusion frame operator Sg,, satisfying

QSRQ”
QI

Proof. For each f € H we have

< Sr, < 1Q7MPQSRQ™

Since Q*f € H and R is a continuous relay fusion frame for H, we have
Q< [ [ b ulP A, @ Fldito)dit)

< Q|2 /Q /Q 02, 1Py Mg £ dp(o)dpu(uw).

Thus

A
lQ*[I?ll(Q*

On the other hand, we have

PP [ [, ool Poataman. S daout)

W, = Tow, (@) mw, Q™.

So
1P A Il < 1@ 1 Pri A, @° 1
Therefore
L[ el P Aumgu f1Pdu(w)dntu) <

< @Y /Q /Q 02, | Pr A, Q° F|2dpa(o)dp(w) <
< BIQIPI@)AIAIP.
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Now show that .
QSRQ

QI
For all f € H, we have

S *
ng\g L5 = ‘QHQ// o2, | Py A, Q° FIPda(v)dpu(w)

< Sr, < 1Q7PQSRQ".

{
- HQHQ//Q ol | P, Awtow, @, 1P dpa(v) dpa(w)

Q*|?
: H||Q||H2 || aball Pushumouw £1Pdito)dnto)
= <S'RQ fa f>
Since
mw, = mgwa (@) T, Q"
we have

(Sro fo ) = /Q /Q 02 1Py Aquw £2dpu(0)dpu(u0)
- / / o2, 1Py Ao (@ V) 1w Q" £ 2du(v) duw)

U@ [ [ b P A, @ )t
= (@) I*(Sro Q" 1, Q")
= (@ ) IPQRSro Q" . f)
<
Theorem 12. Let R be a continuous relay fusion frame for H with continuous
relay fusion frame bounds A and B. If Q. € B(Ky)’s are invertible operators

for each w € Q, then R = {Wy, QuVuwv: Aw; Cwp tweqven, 18 a continuous relay
fusion frame for H.

Proof. For all f € H, we have
||QwPVw,vAw7TWwf|| = ||PQwVw,vaPVw,vAw7TWwa S ||Qw||HPQwVw,vAw7erf||
So

1
WHPVwWAwWWwa <P Vi Ao, -
w w



Continuous Relay Fusion Frame in Hilbert Spaces 233

Therefore

. A } 2 a%vv 2
mind — A4 Lygpe < / / Y yp A £ dp(o) duw)
weﬂ{uczw||2|r@w1u2 0 Jo, 1QulZlQu 2" ™

We have
PQwVw,v = PQwVw,U (Q’ijl)*PVw,vQ;kU
Then
HPQwVw,UAwWWwa = HPQwVw,v (QIZI)*PVw,vQ*wAwWWw”
< l@u @z I Fv.,., Awrw, f]-
Hence

[ abliPocve Aum, Pdn(e)dito) (o)t
< [ 1QuIPI@ PP A, £ P

< max 10 IP1(@a') 1P b BIAIP

4. Perturbation of the continuous relay fusion frames

Theorem 13. Let R1 = {Wy, Vip.v, Aw, Vw,v fwenveq be a continuous relay fusion
frame for H with continuous relay bounds A and B. Suppose that {Zy}tveq.,
15 a family of closed subspaces in K, for each w € § and there exist constants
C, D, e such that max{C + ﬁ,D} <1 and for all f € H
1

2
(/ / a121},v||PVuf,vAw7TWuff - PZw,vAwﬂ-Wwf||2du(v)dlj’(w))

QJQy

2
: C</Q/Q a?"’“”PVw,vAw”Wwf!ZdM(v)du(w)>

1
2
+D( L/ Oéi,v|PZw,vAw7TWwfH2dM(v)dM(w)> T elfll
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Then Ro = {Wuy, Zww, Auws Qwp fwevew 5 a continuous relay fusion frame for
H with continuous relay fusion frame bounds

(O EY (LAY
1+D ’ 1-D '

Proof. We have for each f € H
( N afu,vHva,vAwﬂwwfIIQdM(v)du(w))

QJQy
- ( I ai,v||Pzw,UAwwwwf||2du<v>du(w>>
QJQy

1

2
= </Q/Q o [ P A, f = PZw,vAwWWwf”zdu(v)du(w)>

<(e+5)([ ] w P, Aumw S Pauo)duto)

2
+ D</Q/Q ai}’vHPZw’vAwﬂ-Wwf”zdﬁt(v)du(w)) ‘

1—C — _€£\2
VA 2 - 2
A2 ) e [ ] e,

Similarly we can prove that

14+C+-5\2
B(—— B} |p)2 > / / 02, 1 Pu A f I du(o) dpuw).
1-D QJOu,

Then

PZw,UAwﬂ-Wwfuzd:u‘(,U)du(w)'

<

Theorem 14. Let R1 = {Wy, Vip v, A, Quwp Jweaweq, be a continuous relay
fusion frame for H with continuous relay fusion frame bounds A and B. Suppose

that {Zy v tveq, s a family of closed subspaces in Ky, for each w € Q and there
exists a constant 0 < C < A such that

/Q /Q o2, | Py A f — Pr Awmw fIdu(o)du(w) < C|fI2, Vf € H.

Then Ro = {Wuy, Zy v, A, Qv JweQweq,, 18 a continuous relay fusion frame for
H with continuous relay fusion frame bounds

VC-VA,  VC+VB.
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Proof. For each f € H, we have

||{aw7vPZw,vAw7TWw f}’wEQ,UEQw ”
< ”{aw,vPVw,vAwWWwf - Oéw,vPZw,vAwﬂ'Wwf}weQ,veQw |
+ Hw,w Py, AT, f Yweawean |l

< (VC+VB)| .

Then
L[ aballPae um £ Pdute)dute) < (VE + VP11,
Similarly we have for each f € H

/Q /Q o2, | P Awmw, f2dp(o)dp(w) > (VO — VA?| 2
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