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m−Convex (m− cv) Functions

R.A. Sharipov*, M.B. Ismoilov

Abstract. The theory of m−convex (m− cv) functions is a new direction in the theory
of real geometry. However, for m = 1 this class coincides with the class of convex
functions, and for m = n it coincides with the class of subharmonic functions, which, as
is known, have been well studied (A.Aleksandrov, I.Bakelman, A.Pogorelov, N.Ivochkina,
I.Privalov, etc.) The definition of m − cv functions for 1 < m < n has a very different
nature, which uses high-order Hessians. Functions for such m have been considered in a
series of works by N.Trudinger, X.Wang and others.
In this article, we establish a connection between m−convex functions and strongly
m−subharmonic (shm) functions and, using the well-known properties of shm functions,
we prove a number of important properties of the class of m− cv functions.
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1. Introduction

m−convex functions are a generalization of convex functions in Rn. Below
we will show that they are directly related to strongly m−subharmonic (shm)
functions in the complex space Cn. The theory of shm−functions is an actual di-
rection of research in the pluripotential theory, treated by many mathematicians,
such as (Z.Blocki [6], S.Dinew and S.Kolodzej [7, 8, 9], S.Y.Li [10], H.C.Lu [11],
A.Sadullaev and his disciples [12, 13, 14] and others).

A twice smooth function u(z) ∈ C2(D), D ⊂ Cn is said to be strongly
m−subharmonic if the relation

shm(D) =
{
u ∈ C2 : (ddcu)s ∧ βn−s ≥ 0, s = 1, 2, ..., n−m + 1

}
=

= {u ∈ C2 : ddcu ∧ βn−1 ≥ 0, (ddcu)2 ∧ βn−2 ≥ 0, ...
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(ddcu)n−m+1 ∧ βm−1 ≥ 0} (1)

holds at each point of the domain D, where β = ddc∥z∥2 is a standard volume
form in Cn.

Operators (ddcu)s ∧ βn−s are closely related to the Hessians. For a twice

smooth function u ∈ C2(D), the second-order differential ddcu = i
2

∑
k,t

∂2u
∂zk∂ z̄t

dzk∧

d z̄t is a Hermitian quadratic form. After a suitable unitary coordinate transform,
it is reduced to the diagonal form ddcu = i

2 [λ1dz1 ∧ d z̄1 + ... + λndzn ∧ d z̄n],

where λ1 , ..., λn are the eigenvalues of the Hermitian matrix
(

∂2u
∂zk∂ z̄t

)
, which

are real: λ = (λ1, ..., λn) ∈ Rn. Note that the unitary transformation does not
change the differential form β = ddc∥z∥2. Therefore, it is easy to see that

(ddcu)s ∧ βn−s = s! (n− s)!Hs (u)βn,

where Hs(u) =
∑

1≤j1<...<js≤n
λj1 ...λjs is the Hessian of dimension s of the vector

λ = λ(u) ∈ Rn.
Hence, the twice smooth function u(z) ∈ C2(D), D ⊂ Cn, is strongly m−

subharmonic if at each point o ∈ D it satisfies the following inequalities:

Hs
o(u) ≥ 0, s = 1, 2, ..., n−m + 1. (2)

The following very useful theorem is true.

Theorem 1. (see [6], [7]). For any twice smooth shm∩C2(D) functions w1, ..., ws ∈
shm(D) ∩ C2(D), 1 ≤ s ≤ n−m + 1, the relation

ddcw1 ∧ ... ∧ ddcws ∧ βm−1 ≥ 0

is valid. In particular, for u ∈ shm(D) ∩ C2(D) and for any w1, ..., wn−m ∈
shm(D) ∩ C2(D) the relation

ddcu ∧ ddcw1 ∧ ... ∧ ddcwn−m ∧ βm−1 ≥ 0 (3)

holds. The last property has a dual character: if a twice smooth function u satis-
fies (3) for all w1, ..., wn−m ∈ shm(D) ∩ C2(D), then the function u is certainly
shm function.

Remark 1. Since any function w ∈ C2(D) uniformly approximates in C2−norm
(on compact sets K ⋐ D), then in (3) as w1, ..., wn−m ∈ shm(D)∩C2(D) we can
take second-order Hermitian polynomials or squares (see also [6, 7])

wj =
n∑

k,t=1

cjktzkz̄t ∈ shm (Cn) , cjkt = c̄jtk. (4)
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Theorem 1 allows us to define shm functions in the class L1
loc.

Definition 1. The function u ∈ L1
loc(D) is called shm in a domain D ⊂ Cn, if

it is upper semicontinuous and for any twice smooth shm functions w1, ..., wn−m

in the form (4), the current ddcu ∧ ddcw1 ∧ ... ∧ ddcwn−m ∧ βm−1[
ddcu ∧ ddcw1 ∧ ... ∧ ddcwn−m ∧ βm−1

]
(ω) =

=

∫
uddcw1 ∧ ... ∧ ddcwn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0

is positive defined, i.e.∫
uddcw1 ∧ ... ∧ ddcwn−m ∧ βm−1 ∧ ddcω ≥ 0, ∀ω ∈ F 0,0, ω ≥ 0.

We note the following properties of the shm functions:
1) psh = sh1 ⊂ sh2 ⊂ ... ⊂ shm ⊂ ... ⊂ shn = sh;
2) if u, v ∈ shm, then au + bv ∈ shm for any a, b ≥ 0;
3) if γ(t) is convex, increasing function of the parameter t ∈ R and u ∈ shm,

then γ ◦ u ∈ shm;
4) the limit of uniformly convergent or decreasing sequence of shm functions

is shm;
5) a maximum of two shm functions is again shm;
6) if u ∈ shm, then for any complex hyperplane Π ⊂ Cn the restriction u|Π

is a shm function. As a consequence, it follows that if u ∈ shm, then for any
m−dimensional plane Π ⊂ Cn, dim Π = m, the restriction u|Π is a sh function.

2. m−convex functions

Let D ⊂ Rn and u(x) ∈ C2(D). The matrix
(

∂2u
∂xk∂ xt

)
is symmetric, ∂2u

∂xk∂ xt
=

∂2u
∂xt∂ xk

. Therefore, after a suitable orthonormal transformation, it is transformed
into a diagonal form

(
∂2u

∂xk∂ xt

)
→


λ1 0 ... 0
0 λ2 ... 0
... ... ... ...
0 0 ... λn

 ,

where λj = λj(x) ∈ R are the eigenvalues of the matrix
(

∂2u
∂xk∂xt

)
. Let

Hs(u) = Hs(λ) =
∑

1≤j1<...<js≤n

λj1 ...λjs

be a Hessian of dimension s of the vector λ = (λ1, λ2, ..., λn).
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Definition 2. A twice smooth function u ∈ C2(D) is called m−convex in D ⊂
Rn, u ∈ m − cv(D), if its eigenvalue vector λ = λ(x) = (λ1(x), λ2(x), ..., λn(x))
satisfies the condition

m− cv ∩ C2(D) = {Hs(λ(x)) ≥ 0, ∀x ∈ D, s = 1, ..., n−m + 1} .

It is clear that for m = 1 the class 1 − cv ∩ C2(D) =
{
H1(λ) ≥ 0

}
=

{λ1 ≥ 0, ..., λn ≥ 0} coincides with the convex functions in Rn. The class of con-
vex functions has been well studied by A.Aleksandrov, I.Bakelman, A.Pogorelov,
N.Ivochkina, A.Artikbaev and others [1] – [4]. For m = n, the class n − cv ∩

C2(D) =

{
Hn(λ) =

n∑
j=1

λj ≥ 0

}
coincides with the subharmonic functions in Rn

(see [5]).
When m > 1, the class of m− functions has been studied in a series of works

by N.Trudinger, X.Wang and others (see [15] – [20]).

3. Relationship between m− cv and shm functions

The study of functional properties of the class of m − cv functions and the
construction of a potential theory in it is the main subject of this paper. Our
purpose and method of study are somewhat different from the approach of the
authors mentioned above, where the main focus was on solving equations in
Hessians of type Hn−m+1(λ(x)) = f(x, u) in the class of m − cv functions. The
point is that, in the class of shm functions, this Hessian type equation is equivalent
to the nonlinear elliptic equation (ddcu)n−m+1 ∧ βm−1 = f(x, u)βn.

We will consider real space Rn
x in corresponding complex space Cn, Rn

x ⊂
Cn
z = Rn

x + iRn
y , (z = x + iy), as a real n−dimensional subspace.

Proposition 1. A twice smooth u(x) ∈ C2(D), D ⊂ Rn
x, is m− cv in D if and

only if the function uc(z) = uc(x + iy) = u(x), that does not depend on variables
y ∈ Rn

y , is shm in the domain D × Rn
y .

Proof. Recall that uc(z) is shm if and only if the eigenvalues λj = λj(z) ∈ R−
of the matrix

∥∥∥∂2uc(z)
∂zk∂ z̄t

∥∥∥ satisfy H1(λ) ≥ 0, ...,Hn−m+1(λ) ≥ 0. But

∂2uc(z)

∂zk∂ z̄t
=

∂2uc(x + iy)

∂zk∂ z̄t
=

∂2u(x)

∂zk∂ z̄t
=

1

4

∂2u(x)

∂xk∂ xt
.

Then, the eigenvalues of the matrices
∥∥∥∂2uc(z)

∂zk∂ z̄t

∥∥∥ and
∥∥∥ ∂2u(x)
∂xk∂ xt

∥∥∥ coincides. There-

fore, u ∈ m−cv(D) ⇔ uc ∈ shm(D×Rn
y ) and this implies that u ∈ C2∩m−cv(D)
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if and only if in the domain Dc = D × Rn
y ⊂ Cn the differential forms satisfy

(ddcuc)s ∧ βn−s ≥ 0, s = 1, 2, ..., n−m + 1.

◀

Below we will need the following lemma.

Lemma 1. A Hermitian square w =
n∑

k,t=1

cktzkz̄t, ckt = c̄tk is a shm−function,denoted

w ∈ shm (Cn), if and only if the real square v =
n∑

k,t=1

dktxkxt is an m − cv (Rn)

function, where

dkt =

{
ckt if k ̸= t
ckt
2 if k = t.

Proof. Since dkt = dtk, the function

v =

n∑
k,t=1

dktxkxt =
∑
k<t

[ckt + ctk]xkxt +
1

2

n∑
k=1

ckkx
2
k =

=
∑
k<t

2Recktxkxt +
1

2

n∑
k=1

ckkx
2
k =

n∑
k,t=1

Recktxkxt

is real. We show that if w ∈ shm (Cn) , then v =
n∑

k,t=1

dktxkxt ∈ m − cv(Rn)

or, which is the same, vc(z) = v(x) ∈ shm(Cn). We have ∂2vc(z)
∂zk∂ z̄t

= 1
4
∂2v(x)
∂xk∂xt

.
Consequently,

ddcvc =
∑
k,t

dk,t
∂2 [xkxt]

∂zk∂ z̄t
dzk ∧ d z̄t =

1

4

∑
k,t

dk,t
∂2 [xkxt]

∂xk∂ xt
dzk ∧ d z̄t =

=
1

4

∑
k ̸=t

ck,t dzk ∧ d z̄t +
1

4

n∑
k=1

ckkdzk ∧ d z̄k =
1

4
ddcw.

It follows vc(z) = v(x) ∈ shm(D×Rn
y ) for w =

n∑
k,t=1

cktzkz̄t ∈ shm(Cn). Therefore,

v(x) ∈ m− cv(D).
Conversely, if v(x) ∈ m − cv(D), then vc(z) = v(x) ∈ shm

(
D × Rn

y

)
. It

follows from ddcvc = 1
4dd

cw that w ∈ shm (Cn) . Lemma 1 is proved. ◀

The following theorem is the main result of our study on m− cv functions.
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Theorem 2. A twice smooth function u(x), x ∈ D ⊂ Rn
x, is m − cv(D) if and

only if

ddcuc∧ddcvc1∧...∧ddcvcn−m∧βm−1 ≥ 0 , ∀ v1, ..., vn−m ∈ m−cv(D)∩C2(D). (5)

Moreover, it suffices here to consider the class of squares

vj =

n∑
k,t=1

djktxkxt ∈ m− cv(D), djkt ∈ R, djkt = djtk, j = 1, 2, ..., n−m. (6)

Proof. Necessity. If u(x) ∈ m−cv(D), then, by Proposition 1, uc, vc1, ..., v
c
n−m ∈

shm(D × Rn
y ) ∩ C2(D × Rn

y ), and by Theorem 1

ddcuc ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ≥ 0.

Sufficiency. Let u(x) ∈ C2(D) satisfy conditions (5). We need to demonstrate
that uc(z) = uc(x + iy) = u(x) is a shm(D × Rn

y ) function, which is the same as

ddcuc∧ddcw1∧...∧ddcwn−m∧βm−1 ≥ 0, ∀wj =

n∑
k,t=1

cjktzkz̄t ∈ shm (Cn) , cjkt = c̄jtk,

ddcwj =
n∑

k,t=1

cjktdzk ∧ dz̄t. (7)

According to Lemma 1, the function vj =
n∑

k,t=1

djktxkxt is m−convex, where

djkt =

{
cjkt if k ̸= t
cjkt
2 if k = t,

vj =
n∑

k,t=1

djktxkxt ∈ m−cv (Rn) or, which is the same, vcj(z) = vj(x) ∈ shm (Cn) .

According to assumption (5),

ddcuc∧ddcw1∧ ...∧ddcwn−m∧βm−1 =
1

4
ddcuc∧ddcvc1∧ ...∧ddcvcn−m∧βm−1 ≥ 0,

∀wj =
n∑

k,t=1

cjktzkz̄t ∈ shm (Cn) , cjkt = c̄jtk. Theorem 2 is proved. ◀

We note that Theorem 2 allows us to give a criterion for u (x) ∈ m − cv(D)
to be in the class L1

loc(D).
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Definition 3. The function u(x) ∈ L1
loc(D) is called m−convex function in the

domain D ⊂ Rn
x, u(x) ∈ m − cv(D), if it is upper semicontinuous and for any

twice smooth m − cv(D) functions v1, ..., vn−m, the current ddcuc ∧ ddcvc1 ∧ ... ∧
ddcvcn−m ∧ βm−1 defined as[

ddcuc ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1
]

(ω) =

=

∫
u cddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0

(
D × Rn

y

)
(8)

is positive, i.e.

∫
u cddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ∧ ddcω ≥ 0, ∀ω ∈ F 0,0

(
D × Rn

y

)
, ω ≥ 0.

Definition 3 allows us to obtain the following refinement of Proposition 1.
Proposition 1′. Function u(x) ∈ L1

loc(D), D ⊂ Rn
x, is m− cv in D if and only

if the function uc(z) = uc(x + iy) = u(x) is shm in domain D × Rn
y .

Proof. It is clear that the functions u(x) and uc(z) = uc(x + iy) = u(x)
both belong to the class L1

loc and are upper semicontinuous at the same time.
If u(x) ∈ m − cv(D), then, according to Definition 3, for any twice smooth
m− cv(D) functions v1, ..., vn−m, the current ddcuc∧ddcvc1∧ ...∧ddcvcn−m∧βm−1

defined as [
ddcuc ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1

]
(ω) =

=

∫
u cddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0

(
D × Rn

y

)
(9)

is positive. In particular, this current is also positive for all functions of the form

vj =
∑
k,t

djktxkxt ∈ m− cv(D), djkt = djtk, j = 1, 2, ..., n−m.

As we have seen above, for any functions wj =
∑
k,t

cjktzkz̄t ∈ shm(Cn), cjkt = c̄jtk,

we have ddcvcj = 1
4dd

cwj and vcj ∈ shm(Cn), or, which is the same, vj(x) ∈
m− cv(D). Here

vj =

n∑
k,t=1

djktxkxt, djkt =

{
cjkt if k ̸= t
cjkt
2 if k = t.

Therefore, according to the condition∫
uc ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ∧ ddcω ≥ 0, ∀ω ∈ F 0,0

(
D × Rn

y

)
, ω ≥ 0,
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we obtain ∫
ucddcw1 ∧ ... ∧ ddcwn−m ∧ βm−1 ∧ ddcω =

= 4n−m

∫
ucddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ∧ ddcω ≥ 0, ∀ω ∈ F 0,0(D × Rn

y ), ω ≥ 0,

i.e. uc(z) ∈ shm(D × Rn
y ).

Conversely, if uc(z) = u(x) ∈ shm(D × Rn
y ), then∫

ucddcw1 ∧ ... ∧ ddcwn−m ∧ βm−1 ∧ ddcω ≥ 0, ∀ω ∈ F 0,0
(
D × Rn

y

)
, ω ≥ 0,

∀wj =
∑
k,t

cjktzkz̄t ∈ shm (Cn) , cjkt = c̄jtk, j = 1, 2, ..., n−m.

But then for any real function

vj =
∑
k,t

djktxkxt ∈ m− cv (Rn) , djkt = djtk, j = 1, 2, ..., n−m,

we have ddcvcj = 1
4dd

cwj , where wj =
n∑

k,t=1

cjktwkw̄t and

cjkt =

{
djkt if k ̸= t

2djkk if k = t.

It follows wj ∈ shm (Cn) , j = 1, 2, ..., n−m and, according to Theorem 1,∫
u cddcw1 ∧ ... ∧ ddcwn−m ∧ βm−1 ∧ ddcω ≥ 0, ω ∈ F 0,0

(
D × Rn

y

)
, ω ≥ 0.

Therefore, ∫
ucddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ∧ ddcω =

=
1

4n−m

∫
ucddcw1 ∧ ... ∧ ddcwn−m ∧ βm−1 ∧ ddcω ≥ 0, ω ∈ F 0,0(D × Rn

y ), ω ≥ 0,

which proves u(x) ∈ m− cv(D). ◀
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4. Properties of m− cv(D) functions

We note the following properties of the m− cv functions.
1. cv = 1 − cv ⊂ 2 − cv ⊂ ... ⊂ m− cv ⊂ ... ⊂ n− cv = sh.
Proof. We will use Proposition 1′: an upper semicontinuous function u(x) ∈

L1
loc(D), D ⊂ Rn is in m− cv(D) if and only if the function uc(z) = u(x + iy) =

u(x) is in shm(D×Rn). Let u(x) ∈ (m−1)−cv(D). Then uc(z) ∈ shm−1(D×Rn).
Since the inclusion shm−1 ⊂ shm is whell known, we have uc(z) ∈ shm(D ×Rn).
Hence u(x) ∈ m− cv(D). ◀

2. If u, v ∈ m− cv, then au + bv ∈ m− cv for any a, b ≥ 0.
Proof. If u, v ∈ m− cv, then the following currents are positive:

ddcuc ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ≥ 0,

ddcvc ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ≥ 0.

From this it follows that

ddc(auc + bvc) ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 =

addcuc ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1+

bddcvc ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ≥ 0.

◀

3. If γ(t) is convex, increasing function of the parameter t ∈ R and u ∈ m−cv,
then γ ◦ u ∈ m− cv.

4. The limit of uniformly converging or decreasing sequence of m−cv functions
is m− cv (obviously).

5. The maximum of finite number of m− cv functions is again m− cv.
Proof. It is enough to prove it for a maximum of two functions u, v ∈ m− cv.

We again use Proposition 1′, that the functions uc, vc ∈ shm
(
D × Rn

y

)
. As proved

in [13], max {uc(z), vc(z)} ∈ shm
(
D × Rn

y

)
. But then

[max {u(x), v(x)}]c = max {uc(z), vc(z)} ∈ shm
(
D × Rn

y

)
.

That is, max {u(x), v(x)} ∈ m− cv(D). ◀

6. If u ∈ m− cv, then for any hyperplane Π ⊂ Rn the restriction u|Π is also
m− cv function on Π;

Proof. Indeed, we fix a hyperplane Π ⊂ Rn, assuming, without loss of
generality, Π = {(x1, ..., xn−1, xn) ∈ Rn : xn = 0}. Then ΠC = Π × iΠ =
{(z1, ..., zn−1, zn) ∈ Cn : zn = 0} is a hyperplane in a complex space Cn. In
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[13] Sadullaev-Abdullaev proved that if w(z) ∈ shm(D × Rn
y ), then w(z)|ΠC ∈

shm((D × Rn
y ) ∩ ΠC). Hence, uc(z)|ΠC ∈ shm((D × Rn

y ) ∩ ΠC), which means
u(x)|Π ∈ m− cv(D ∩ Π). ◀

Corollary 1. If u ∈ m − cv, then for any plane Π ⊂ Rn, dimR Π = m, the
restriction u|Π is a subharmonic function, u|Π ∈ m− cv = sh.

The proof is easily obtained by applying property 6 consecutively to the planes
Πn−1 ⊃ Πn−2 ⊃ ... ⊃ Πm = Π. ◀
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