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On the Inverse Spectral Problem for the One-dimensional
Stark Operator on the Semiaxis

A.Kh. Khanmamedov∗, Y.I. Huseynova

Abstract. We consider the Stark operator T = − d2

dx2 +x+q (x) on the semiaxis 0 ≤ x <
∞ with the Dirichlet boundary condition at the origin. The asymptotic behavior of the
eigenvalues of this operator is studied. By the method of transformation operators, we
study the spectral problem. We give a rigorous derivation of the main integral equation
for the inverse problem.
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1. Introduction

Stark operator is of significant interest for the spectral theory. Many authors
have studied various aspects of the direct and inverse spectral problems for this
operator (see [2, 3, 4, 5, 6, 7, 10, 11, 12] and the references therein).

Consider a boundary value problem generated on the semiaxis 0 ≤ x <∞ by
a differential equation

−y′′ + xy + q (x) y = λy, λ ∈ C, (1)

with a boundary condition
y (0) = 0 (2)

in the case where the function q (x) is real and satisfies the conditions

q (x) ∈ C(1) [0,∞) , σj (0) =

∫ ∞
0

xj |q (x)| dx <∞, j ≤ 5, (3)
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with σj (x) =
∫∞
x tj |q (t)| dt, x ≥ 0, which are assumed to hold throughout the

work.

In [12], the inverse scattering problem for the boundary value problem (1)–
(2) was studied, where, in addition to (3), the potential q (x) is subject to the
additional condition

q (x) = o (x) , x→∞. (4)

Moreover, in [12], when solving the inverse problem, a formal derivation of the
Gelfand-Levitan-Marchenko type main integral equation was given. In this re-
gard, the question arises of a rigorous substantiation for a derivation of main
integral equation.

In the present paper, by the method of transformation operators, we study the
spectral problem for the boundary value problem (1), (2) in the class of potentials
(3). We obtain a Marchenko-type integral equation for the problem (1)–(2). A
rigorous derivation of this equation is given.

2. Preliminary information and asymptotic behavior of
eigenvalues

We consider the unperturbed equation

−y′′ + xy = λy, 0 ≤ x <∞, λ ∈ C. (5)

It is known [1] that (5) has a solution f0 (x, λ) of the form f0 (x, λ) = Ai (x− λ),
where Ai (z) is the Airy function of the first kind. It is clear that the spectrum of
the problem (5), (2) is discrete and consists of the roots of the function f0 (0, λ) =
Ai (−λ). The function Ai (−λ) has roots λ̂n, n = 1, 2, ..., only on the positive
semiaxis [1] and the following asymptotic equality is true:

λ̂n = g

(
3π (4n− 1)

8

)
, (6)

where

g (z) ∼ z
2
3

(
1 +

5

48
z−2 − 5

36
z−4 +

77125

82944
z−6 − 108056875

6967296
z−8 + ...

)
, z →∞.

From the well-known properties of Airy functions it follows that

α̂n
def
=

(∫ ∞
0

∣∣∣f0 (x, λ̂n)∣∣∣2 dx) 1
2

= Ai′
(
−λ̂n

)
= (−1)n−1 g1

(
3π (4n− 1)

8

)
,
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where

g1 (z) ∼ π−
1
2 z

1
6

(
1 +

5

48
z−2 − 1525

4608
z−4 +

2397875

663552
z−6...

)
, z →∞.

Moreover, the system of functions

{
f0(x,λ̂n)

α̂n

}∞
n=0

forms as an orthonormal basis

for the space L2 (0,∞), i.e. the following equality holds:

∞∑
n=0

f0

(
x, λ̂n

)
α̂n

f0

(
y, λ̂n

)
α̂n

= δ (x− y) , (7)

where δ is the Dirac delta function.
Now we introduce the solution f(x, λ) of the perturbed equation (1) with

asymptotics f (x, λ) = f0 (x, λ) (1 + o (1)) , x→∞. It follows from [13] that un-
der the conditions (3) such solution exists and admits the following representation
by means of a transformation operator:

f (x, λ) = f0 (x, λ) +

∫ ∞
x

A (x, t) f0 (t, λ) dt, (8)

where the kernel K (x, t) is a continuous function and satisfies the following re-
lation:

|A (x, t)| ≤ C 1

2
σ

(
x+ t

2

)
. (9)

Hereinafter, C will denote various constants which do not depend on x, λ and n.
By using the well-known properties of transformation operators (see, e.g., [14])
and (7), we find

f0(x, λ) = f(x, λ) +

∫ ∞
x

Â(x, t)f(t, λ)dt, (10)

where the kernel Â (x, y) satisfies the equation

Â (x, y) +A (x, y) +

∫ y

x
Â (x, t)A (t, y) dt = 0. (11)

The last equation and (9) imply∣∣∣Â (x, y)
∣∣∣ ≤ Cσ0(x+ y

2

)
. (12)

Let us now return to problem (1)-(2). Obviously, under condition (3), differen-
tial equation (1) together with boundary condition (2) defines in space L2 (0,+∞)
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a self-adjoint operator L0, which can be obtained by closure of the symmetric op-
erator defined by equation (1) and boundary condition (2) on twice continuously
differentiable finite functions (see [15]). Moreover, the spectrum of problem (1),
(2) consists of simple eigenvalues λn, n = 0, 1, 2, ... and coincides with the set
of roots of the function f (0, λ), i.e., the equalities f (0, λn) = 0, n = 0, 1, 2, ...,

are true. Therefore, the eigenfunctions
{
f(x,λn)
αn

}∞
n=0

of problem (1), (2), where

αn =
√∫∞

0 |f (x, λn)|2 dx, form an orthonormal basis for the space L2 (0,∞), i.e.,

the following relation is true:

∞∑
n=0

f (x, λn)

αn

f (y, λn)

αn
= δ (x− y) . (13)

Theorem 1. Under conditions (3), the spectrum of the operator L consists of a
sequence of simple real eigenvalues λn, n ≥ 0, and the asymptotic formula

λn =

(
3π (4n− 1)

8

) 2
3

+O
(
n−

2
3

)
, n→∞ (14)

is valid.

Proof. By virtue of (8) we have

f (0, λ) = f0 (0, λ) +

∫ ∞
0

A (0, t) f0 (t, λ) dt. (15)

From the well-known relation [1]

Ai (−z) ∼ π−
1
2 z−

1
4 sin

(
ζ +

π

4

) [
1 +O

(
ζ−1
)]
, ζ =

2

3
z

3
2 , z → +∞,

and the definition of the function f0 (x, λ), it follows that

f0 (0, λ) = 2λ−
1
4 sin

(
2

3
λ

3
2 +

π

4

)[
1 +O

(
λ−

3
2

)]
, λ→ +∞. (16)

On the other hand, as shown in [13], when the condition Q4 <∞ is satisfied, the
relation ∫ ∞

0
A (0, t) f0 (t, λ) dt = O

(
λ−

3
4

)
, λ→ +∞,

holds. From the last three relations we find

f (0, λ) = 2λ−
1
4 sin

(
2

3
λ

3
2 +

π

4

)
+O

(
λ−

3
4

)
, λ→ +∞. (17)
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Let λ̃n =
(
3π(4n−1)

8

) 2
3
. Then, for large values of n, by virtue of (17), the

function f
(

0, λ̃n + λ
)

takes values of different signs at the ends of the segment[
−λ̃−

1
2

n , λ̃
− 1

2
n

]
. Therefore, there is a point belonging to this segment at which the

function f
(

0, λ̃n + λ
)

vanishes. Let f
(

0, λ̃n + δn

)
= 0, δn ∈

(
−λ̃−

1
2

n , λ̃
− 1

2
n

)
.

Then, on the basis of (17) we conclude that

sin

(
2

3

(
λ̃n + δn

) 3
2

+
π

4

)
= O

(
λ̃
− 1

2
n

)
, n→∞. (18)

Since 2
3

(
λ̃n + δn

) 3
2

= 2
3 λ̃

3
2
n

(
1 + δn

λ̂n

) 3
2 ∼ 2

3 λ̃
3
2
n

(
1 + 3

2
δn
λ̂n

)
= 2

3 λ̃
3
2
n + λ̃

1
2
nδn, n→∞,

from (18) we get sin λ̃
1
2
nδn = O

(
λ̂
− 1

2
n

)
, n → ∞. Whence it follows that δn =

O
(
n−

2
3

)
, n→∞. Thus, the proof of the theorem is completed. J

3. Derivation of the main integral equation of the inverse
problem

An important role in the solution of the inverse problem is played by the
Marchenko-type integral equation. We put

ΦN (x, y) =
N∑
n=0

f (x, λn) f (y, λn)

α2
n

−
N∑
n=0

f0

(
x, λ̂n

)
f0

(
y, λ̂n

)
α̂2
n

, (19)

FN (x, y) =
N∑
n=0

f0 (x, λn) f0 (y, λn)

α2
n

−
N∑
n=0

f0

(
x, λ̂n

)
f0

(
y, λ̂n

)
α̂2
n

. (20)

From the results of [8, 9] it follows that the sequences ΦN (x, y) and FN (x, y) are
uniformly convergent in each finite domain of variation of the variables x and y.
Put Φ (x, y) = lim

N→∞
ΦN (x, y). By using (6), (13), (19) we find that the sequence∫∞

x ΦN (x, y) g (y) dy converges to zero in quadratic mean. In what follows, for
brevity, we will write this equality in the form

l · i ·m
N→∞

· (L2 (x,∞))

∫ ∞
x

ΦN (x, y) g (y) dy = 0.
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Since g (y) is a function with bounded support, integration in
∫∞
x ΦN (x, y) g (y) dy

is, in fact, between finite limits. Passing to the limit as N →∞, we obtain

lim
N→∞

∫ ∞
x

ΦN (x, y) g (y) dy =

∫ ∞
x

Φ (x, y) g (y) dy = 0.

Thus, we have proved the identity∫ ∞
x

Φ (x, y) g (y) dy = 0,

where g (y) is an arbitrary function with bounded support. Therefore,

Φ (x, y) = lim
N→∞

ΦN (x, y) = 0.

Let

F (x, y) =
∞∑
n=0

f0 (x, λn) f0 (y, λn)

α2
n

−
f0

(
x, λ̂n

)
f0

(
y, λ̂n

)
α̂2
n

 . (21)

Theorem 2. For any fixed x ≥ 0, the function A (x, y) from representation (7)
satisfies the integral equation

F (x, y) +A (x, y) +

∫ ∞
x

A (x, t)F (t, y) dt = 0, y > x. (22)

Equation (22) is called the main integral equation of the Marchenko-type.

Proof. Consider representation (10). For y > x, it follows from (19) that

N∑
n=0

f (x, λn)

αn

f0 (y, λn)

αn
=

N∑
n=0

f (x, λn)

αn

f (y, λn)

αn
+

+

∫ ∞
y

Â (y, t)

{
N∑
n=0

f (x, λn)

αn

f (t, λn)

αn

}
dt =

=
N∑
n=0

f0

(
x, λ̂n

)
α̂n

f0

(
y, λ̂n

)
α̂n

+ΦN (x, y)+

∫ ∞
y

Â (y, t)

{
N∑
n=0

f (x, λn)

αn

f (t, λn)

αn

}
dt.

Further, using formulas (7) and (6), we obtain

N∑
n=0

f (x, λn)

αn

f0 (y, λn)

αn
=

N∑
n=0

f0 (x, λn)

αn

f0 (y, λn)

αn
+
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+

∫ ∞
x

A (x, t)

{
N∑
n=0

f0 (t, λn)

αn

f0 (y, λn)

αn

}
dt =

N∑
n=0

f0

(
x, λ̂n

)
α̂n

f0

(
y, λ̂n

)
α̂n

+

+

N∑
n=0

f0 (x, λn)

αn

f0 (y, λn)

αn
−
f0

(
x, λ̂n

)
α̂n

f0

(
y, λ̂n

)
α̂n

+

+

∫ ∞
x

A (x, t)


N∑
n=0

f0

(
t, λ̂n

)
α̂n

f0

(
y, λ̂n

)
α̂n

 dt+

+

∫ ∞
x

A (x, t)


N∑
n=0

f0 (t, λn)

αn

f0 (y, λn)

αn
−
f0

(
t, λ̂n

)
α̂n

f0

(
y, λ̂n

)
α̂n


 dt =

=

N∑
n=0

f0

(
x, λ̂n

)
α̂n

f0

(
y, λ̂n

)
α̂n

+FN (x, y)+

∫ ∞
x

A (x, t)


N∑
n=0

f0

(
t, λ̂n

)
α̂n

f0

(
y, λ̂n

)
α̂n

 dt+

+

∫ ∞
x

A (x, t)FN (t, y) dt.

Comparing the last two equalities, we get

ΦN (x, y) +

∫ ∞
y

Â (y, t)

{
N∑
n=0

f (x, λn)

αn

f (t, λn)

αn

}
dt =

=

∫ ∞
x

A (x, t)


N∑
n=0

f0

(
t, λ̂n

)
α̂n

f0

(
y, λ̂n

)
α̂n

 dt+

+

∫ ∞
x

A (x, t)FN (t, y) dt+ FN (x, y) .

Fix x and denote the smooth function with bounded support contained in the
interval (x,∞) by g (y). Multiplying both sides of the latter identity by g (y),
integrating with respect to y, we obtain∫ ∞
x

ΦN (x, y) g (y) dy +

∫ ∞
x

[
N∑
n=0

(∫ ∞
y

Â (y, t)
f (t, λn)

αn
dt

)
f (x, λn)

αn

]
g (y) dy =

=

∫ ∞
x

FN (x, y) g (y) dy+

∫ ∞
x

 N∑
n=0

∫ ∞
y

A (x, t)
f0

(
t, λ̂n

)
α̂n

dt

 f0

(
y, λ̂n

)
α̂n

 g (y) dy+
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+

∫ ∞
x

[∫ ∞
x

A (x, t)FN (t, y) dt

]
g (y) dy.

Passing to the limit as N → ∞, for each smooth function g (y) with bounded
support we obtain∫ ∞

x
Φ (x, y) g (y) dy +

∫ ∞
x

Â (y, x) g (y) dy =

∫ ∞
x

F (x, y) g (y) dy +

∫ ∞
x

A (x, y) g (y) dy+

+ lim
N→∞

∫ ∞
x

[∫ ∞
x

A (x, t)FN (t, y) dt

]
g (y) dy.

Since y > x, we have Â (y, x) = 0. Moreover, as shown above, the identity
Φ (x, y) = 0 is true. Therefore, the relation∫ ∞

x
F (x, y) g (y) dy +

∫ ∞
x

A (x, y) g (y) dy+

+ lim
N→∞

∫ ∞
x

[∫ ∞
x

A (x, t)FN (t, y) dt

]
g (y) dy = 0 (23)

holds. We now show that

lim
N→∞

∫ ∞
x

[∫ ∞
x

A (x, t)FN (t, y) dt

]
g (y) dy =

=

∫ ∞
x

[∫ ∞
x

A (x, t)F (t, y) dt

]
g (y) dy. (24)

Note that for each b > x, uniformly with respect to y ∈ (x, b), the following
equality holds:

lim
N→∞

∫ b

x
A (x, t)FN (t, y) dt =

∫ b

x
A (x, t)F (t, y) dt. (25)

Further, it follows from the definition of the function FN (x, y) and (6), (13) that

the sequence
∫∞
x A (x, t)FN (t, y) dt converges to the limit A0 (x, y) =

(
I + Â

)
(
I + Â∗

)
A (x, y) − A (x, y) in quadratic mean, where I is a unit operator, and

the operator Â is defined by the formula Âh (y) =
∫∞
y Â (y, s)h (s) ds. From the

last relations we find

A0 (x, y) =

∫ ∞
y

Â (y, t)A (x, t) dt+
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+

∫ y

x
Â (s, y)A (x, s) ds+

∫ ∞
y

Â (y, t)

∫ t

x
Â (s, t)A (x, s) dsdt. (26)

If we consider the function

Ab (x, t) =

{
A (x, t) , x ≤ t ≤ b,

0, t > b,

then it can be similarly shown, that the equality

l · i ·m·
N→∞

(L2 (x, b))

∫ b

x
A (x, t)FN (t, y) dt = G (y, b) ,

is valid, where

G (y, b) =

∫ b

y
Â (y, t)A (x, t) dt+

∫ y

x
Â (s, y)A (x, s) ds+

+

∫ b

y
Â (y, t)

∫ t

x
Â (s, t)A (x, s) dsdt+

∫ ∞
b

Â (y, t)

∫ b

x
Â (s, t)A (x, s) dsdt,

for x ≤ y ≤ b. Further, using (8), (12), (26) and expression for G (y, b), we obtain

G (y, b)→ A0 (x, y) , b→∞.

Moreover, the last relation is true uniformly with respect to y. Indeed, due to
formulas (8), (12), (26),

|G (y, b)−A0 (x, y)| ≤ Cσ0 (b)→ 0, b→∞.

On the other hand, taking into account (25), we obtain∫ b

x
A (x, t)F (t, y) dt = G (y, b)

for y ≤ b. Therefore, we get

lim
b→∞

∫ b

x
A (x, t)F (t, y) dt = A0 (x, y) ,

and this equality is true uniformly with respect to y taken from each finite interval
(x, a). Thus, we have proved that the improper integral

∫∞
x A (x, t)F (t, y) dt

converges and the equality∫ ∞
x

A (x, t)F (t, y) dt = A0 (x, y)
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is true. Taking into account that l · i ·m
N→∞

· (L2 (y,∞))
∫∞
x A (x, t)FN (t, y) dt =

A0 (x, y), we have

l · i ·m
N→∞

· (L2 (y,∞))

∫ ∞
x

A (x, t)FN (t, y) dt =

∫ ∞
x

A (x, t)F (t, y) dt.

The last equality implies (24). Since g (x) is an arbitrary function with bounded
support, from (23) we finally obtain equation (22).

The theorem is proved. J
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