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Inverse Problem for a Hyperbolic Integro-Differential
Equation with two Redefinition Conditions at the
End of the Interval and Involution

T.K. Yuldashev∗, O.Sh. Kilichev

Abstract. In this paper, we consider an inhomogeneous hyperbolic type partial integro-
differential equation with degenerate kernel, two redefinition functions and involution.
Intermediate data are used to find these redefinition functions. Dirichlet boundary con-
ditions with respect to spatial variable are used. The Fourier method of separation of
variables is applied. The countable system of functional-integral equations is obtained.
Theorem on a unique solvability of countable system of functional-integral equations is
proved. The method of successive approximations is used in combination with the method
of contraction mappings. The triple of solutions of the inverse problem is obtained in
the form of Fourier series. Absolute convergence of Fourier series is proved.
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1. Problem statement

Ordinary and partial integro-differential equations of the Fredholm type are
of great interest in terms of theoretical research and applications in different fields
of physics, mechanics, engineering and chemistry [1-8]. Today, some new prob-
lems are posed for ordinary and partial integro-differential equations, and a large
number of papers are dedicated to the boundary value and inverse problems for
integro-differential equations. Problems with nonlocal conditions for differential
and integro-differential equations are considered in the large number of publica-
tions, such as [9-29]. In [30-36], integro-differential equations with a degenerate
kernel were considered.
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In the present paper, we study the solvability of the inverse problem for a
hyperbolic type partial integro-differential equation with a degenerate kernel,
three parameters, final conditions at the end of the interval and involution. This
paper differs from the other relevant papers as it requires finding two unknown
redefinition functions. This inverse problem also differs from the corresponding
direct problem.

In the rectangular domain Ω = {0 < t < T, −1 < x < 1}, we consider the
following partial integro-differential equation:

Utt(t, x)−ω2 [Uxx(t, x) + εUxx(t,−x)] = ν

T∫
0

K(t, s)U(s, x) ds+α(t)U(t, x), (1)

where 0 < α(t) ∈ C[0, T ], T is a given positive number, | ε | < 1, ω is a positive

parameter, ν is a nonzero real parameter, K(t, s) =
k∑
r=1

a r(t) b r(s), a r(t), b r(s) ∈

C [0;T ]. It is assumed that the systems of functions {a r(t)} and {b r(s)}, r = 1, k
are linearly independent.

To solve partial integro-differential equation (1), we use Dirichlet boundary
conditions with respect to spatial variable x

U(t,−1) = U(t, 1) = 0, 0 ≤ t ≤ T. (2)

We use also following conditions at the endpoint of the given segment with respect
to time variable t:

U(T, x) = ϕ1(x), Ut(T, x) = ϕ2(x), −1 ≤ x ≤ 1, (3)

where ϕ1(x) and ϕ2(x) are redefinition functions and enough smooth on the seg-
ment [−1, 1]. For these functions, the following conditions are fulfilled: ϕi(−1) =
ϕi(1) = 0, i = 1, 2.

In order to determine the redefinition functions, we use the following two
intermediate conditions:

U(t1, x) = ψ1(x), Ut(t1, x) = ψ2(x), −1 ≤ x ≤ 1, (4)

where ψ1(x) and ψ2(x) are known and enough smooth functions on the segment
[−1, 1], 0 < t1 < T . For the functions ψ1(x) and ψ2(x), the following conditions
are fulfilled: ψi(−1) = ψi(1) = 0, i = 1, 2.

The choice of conditions (3) and (4) with the final and intermediate data is
due to the fact that in practice it is not always possible to determine the initial
conditions. During the process of aluminum production, before the start of the
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production cycle, the raw material passes through firing and the state of the raw
material at the beginning of the production cycle is not known. And the final
expected state of the output will be unknown in reality. We find it from a known
intermediate state. So, we have to solve an inverse problem to solve the partial
integro-differential equation (1).

Problem statement. Find a triple of functions{
U(t, x) ∈ C (Ω) ∩ C2,2

t,x (Ω), ϕi(x) ∈ C[−1, 1], i = 1, 2
}
,

the first of which satisfies the partial integro-differential equation (1) and the
conditions (2)–(4), where Ω = {0 ≤ t ≤ T, −1 ≤ x ≤ 1}.

Note that the problem (1)–(4) is formulated in such a way that the direct
problem (1)–(3) has a unique solution for all values of the parameter ω, and
the inverse problem (1)–(4) has a unique solution only for some values of ω. In
addition, the second parameter ν also plays an important role in the context of
solvability.

2. Formal solution of the direct problem (1)-(3)

First, consider the homogeneous differential equation

Utt(t, x)− ω2 [Uxx(t, x) + εUxx(t,−x)] = 0 (5)

with boundary conditions of the Dirichlet type

U(t,−1) = U(t, 1) = 0, 0 ≤ t ≤ T. (6)

Problem (5), (6) will be solved by the method of separation of variables: U(t, x) =
u(t)ϑ(x). Then, from this problem we arrive at the following spectral problem
for an ordinary differential equation

ϑ′′(x) + εϑ′′(−x) + λϑ(x) = 0 (7)

with boundary conditions

ϑ(−1) = 0, ϑ(1) = 0. (8)

In case of even eigenfunctions, equation (7) takes the form of

(1 + ε)ϑ′′1(x) + λ1ϑ1(x) = 0. (9)

Solving the differential equation (9) with conditions (8), we find the eigenvalues

λ 1n = (1 + ε)π2(n+ 0.5)2 (10)
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and the eigenfunctions

ϑ1n(x) = cos π(n+ 0.5)x, n ∈ N. (11)

In the case of odd eigenfunctions, equation (7) takes the form of

(1− ε)ϑ′′2(x) + λ 2ϑ2(x) = 0. (12)

Solving the differential equation (12) with conditions (8), we find the eigenvalues
and the corresponding eigenfunctions of the following problem:

λ 2n = (1− ε)π2n2, | ε | < 1, (13)

ϑ 2n(x) = sin πnx, n ∈ N. (14)

Note that the eigenfunctions ϑ i n(x) (i = 1, 2) determined by (11) and (14) form
a complete system of orthonormal eigenfunctions in the space L 2[−1, 1]. There-
fore, we seek nontrivial solutions to the inhomogeneous partial integro-differential
equation (1) in the form U(t, x) = U1(t, x) + U2(t, x), where

Ui(t, x) =

∞∑
n=1

u i n(t)ϑ i n(x), i = 1, 2, (15)

are the Fourier series, and U1(t, x), U2(t, x) satisfy the following integro-differential
equation:

Ui tt(t, x)− ω2 [Ui xx(t, x) + εUi xx(t,−x)] = α(t)Ui(t, x) + ν

T∫
0

K(t, s)Ui(s, x) ds,

u i n(t) =

1∫
−1

Ui(t, x)ϑ i n(x) dx, i = 1, 2. (16)

Substituting the Fourier series (15) into this integro-differential equation, we
obtain a countable system of second order ordinary differential equations

u′′i n(t) + ω2λ i n ui n(t) = ν
k∑
r=1

a r(t) τi n r + α(t)ui n(t), i = 1, 2, (17)

where λ i n are the eigenvalues determined by (10) and (13),

τi n r =

T∫
0

b r(s)u i n(s) ds. (18)
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Solving the countable system of inhomogeneous differential equations (17) by the
method of variation of arbitrary constants, we obtain

u i n(t) = A 1n cos
√
λ i n ω t+A 2n sin

√
λ i n ω t+

+
ν√
λ i n ω

k∑
r=1

τ i n r

t∫
0

sin
√
λ i n ω (t− s) a r (s) ds+

+
1√
λ i n ω

t∫
0

sin
√
λ i n ω (t− s)α(s)u i n(s) ds, (19)

where A1n and A2n are arbitrary coefficients of integration, to be determined
later. By differentiating (19) with respect to t, we obtain

u′i n(t) = −
√
λ i nωA 1n sin

√
λ i n ω t+

√
λ i n ωA 2n cos

√
λ i n ω t+

+ν
k∑
r=1

τi n r

t∫
0

cos
√
λ i n ω (t− s) a r (s) ds+

+

t∫
0

cos
√
λ i n ω (t− s)α(s)u i n(s) ds. (20)

For redefinition functions ϕ1(x) and ϕ2(x) we set ϕ1(x) = ϕ11(x)+ϕ21(x) and
ϕ2(x) = ϕ12(x) + ϕ22(x). Now, supposing that the redefinition functions ϕi1(x)
and ϕi2(x) are expanding into a Fourier series and using the Fourier coefficients
(16), from conditions (3) we obtain

u i n(T ) =

1∫
−1

Ui(T, x)ϑ i n(x) dx =

1∫
−1

ϕi 1(x)ϑ i n(x) dx = ϕ i 1n, (21)

u′i n(T ) =

1∫
−1

Ui t(T, x)ϑ i n(x) dx =

1∫
−1

ϕ i 2(x)ϑ i n(x) dx = ϕ i 2n, i = 1, 2. (22)

To find the unknown (arbitrary) coefficients A 1n and A 2n in (19) and (20), we
use the boundary conditions (21) and (22). Then we arrive at the system of
algebraic equations (SAE){

A 1n cos
√
λ i n ω T +A 2n sin

√
λ i n ω T = γ1n,

−A 1n sin
√
λ i n ω T +A 2n cos

√
λ i n ω T = γ2n,

(23)



8 T.K. Yuldashev, O.Sh. Kilichev

where

γ1n = ϕi 1n −
ν√
λ i n ω

k∑
r=1

τ i n r

T∫
0

sin
√
λ i n ω (T − s) ar(s) ds−

− 1√
λ i n ω

T∫
0

sin
√
λ i n ω (T − s)α(s)u i n(s) ds,

γ2n = ϕi 2n − ν
k∑
r=1

τi n r

T∫
0

cos
√
λ i n ω (T − s) ar(s) ds−

−
T∫

0

cos
√
λ i n ω (T − s)α(s)u i n(s) ds.

For unique solvability of SAE (23), the condition

δ0n =

∣∣∣∣ cos
√
λ i n ω T sin

√
λ i n ω T

− sin
√
λ i n ω T cos

√
λ i n ω T

∣∣∣∣ 6= 0

must be fulfilled. Since δ0n = 1, this condition holds for all values of the parameter
ω. Consequently, SAE (23) has a unique solution

A1n =

∣∣∣∣ γ1n sin
√
λ i n ω T

γ2n cos
√
λ i n ω T

∣∣∣∣ = ϕi 1n cos
√
λ i n ω T − ϕi 2n sin

√
λ i n ω T+

+
ν√
λ i n ω

k∑
r=1

τi n r

T∫
0

sin
√
λ i n ω s ar(s) ds+

+
1√
λ i n ω

T∫
0

sin
√
λ i n ω sα(s)u i n(s) ds, (24)

A2n =

∣∣∣∣ cos
√
λ i n ω T γ1n

− sin
√
λ i n ω T γ2n

∣∣∣∣ = ϕ i1n sin
√
λ i n ω T + ϕ i2n cos

√
λ i n ω T+

+ν
k∑
r=1

τi n r

T∫
0

cos
√
λ i n ω s ar(s) ds+

T∫
0

cos
√
λ i n ω sα(s)u i n(s) ds. (25)



Inverse Problem for a Hyperbolic Integro-Differential Equation 9

Substituting (24) and (25) into (19), we obtain

u i n(t, ν, ω) = ϕ i 1n χ i 1n(t, ω) + ϕ i 2n χ i 2n(t, ω)+

+
ν√
λ i n ω

k∑
r=1

τi n r χ 3n r (t, ω) +
1√
λ i n ω

T∫
0

Hi n(t, s, ω)α(s)u i n(s, ν, ω) ds, (26)

where
χ i 1n(t, ω) = cos

√
λ i n ω (T − t)− sin

√
λ i n ω (T − t),

χ i 2n(t, ω) = cos
√
λ i n ω (T + t)− sin

√
λ i n ω (T − t),

χ i 3r n (t, ω) =

T∫
0

Hi n(t, s, ω) ar(s) ds,

Hi n(t, s, ω) =

{
sin z (t+ s), z =

√
λ i n ω, i = 1, 2, t < s ≤ T,

sin z (t− s) + cos z t sin z s+ z sin z t sin z s, 0 ≤ s < t.

Although the functions (26) are the Fourier coefficients of the solution to the
direct problem (1)–(3), they contain extra quantities τi n r that are still unknown.
To find these quantities, we substitute (26) into (18) and arrive at a new SAE:

τ i n r −
ν

λ̄

k∑
j=1

τ i j n r σ i3rj n(t) = ϕ i1n σ i1r n + ϕ i2nσ i2r n + σ i4r n(u i n), (27)

where

σ i1r n =

T∫
0

br(s)χ i1n(s, ω) ds, σ i2r n =

T∫
0

br(s)χ i2n(s, ω) ds, λ̄ =
√
λ i n ω,

σ i3rj n =

T∫
0

br(s)

T∫
0

H i n(s, θ, ω) aj(θ) dθ ds,

σ i4r n (u i n) =
1

λ̄

T∫
0

br(s)

T∫
0

Hi n(s, θ, ω)α(θ)u i n(θ) dθ ds.

To establish the unique solvability of SAE (27), we introduce the matrix

Θi0n(ν, ω) =


1− ν

λ̄
σ i31 1n

ν
λ̄
σ i31 2n . . . ν

λ̄
σ i31kn

ν
λ̄
σ i32 1n 1− ν

λ̄
σ i32 2n . . . ν

λ̄
σ i32kn

. . . . . . . . . . . .
ν
λ̄
σ i3k 1n

ν
λ̄
σ i3k 2n . . . 1− ν

λ̄
σi3 kkn


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and consider the values of the parameter ν, for which the Fredholm determinant
differs from zero:

∆i0n(ν, ω) = det Θi0n (ν, ω) 6= 0. (28)

Determinant ∆i0n(ν, ω) in (28) is a polynomial with respect to ν
λ̄

of degree
no more than k. The countable system of algebraic equations ∆i0n(ν, ω) = 0
has no more than k different real roots for every value of n. We denote them
by µ l (l = 1, p, 1 ≤ p ≤ k). Then νi n = ν i l n = λ̄ µ l =

√
λ i nω µ l are the

characteristic (irregular) values of the kernel of the integro-differential equation
(1). So, we introduce the following notations:

Λ i 1 =
{

(νi n, ω) : νi n =
√
λ i n ω µ l, i = 1, 2, ω ∈ (0,∞)

}
,

Λ i 2 =
{

(νi n, ω) : |∆ i 0n (νi, ω) | > 0, νi n 6=
√
λ i n ω µ l, i = 1, 2, ω ∈ (0,∞)

}
.

On the number set Λ i2, we consider a matrix Θi r mn(ν, ω) =

=


1− νi

λ̄
σi31 1n . . . νi

λ̄
σi31 (j−1)n σim 1n

νi
λ̄
σi31 (j+1)n . . . νi

λ̄
σi31 kn

νi
λ̄
σi32 1n . . . νi

λ̄
σi32 (j−1)n σim 2n

νi
λ̄
σi32 (j+1)n . . . νi

λ̄
σi32kn

. . . . . . . . . . . . . . . . . . . . .
νi
λ̄
σi3k1n . . . νi

λ̄
σi3k (j−1)n σimkn

νi
λ̄
σi 3k (j+1)n . . . 1− νi

λ̄
σi3kkn

 ,

m = 1, 2, 4. Taking into account the known properties of the matrix Θi r mn(ν, ω),
we use the modified Cramer method on the set Λ i2 and obtain the solutions of
SAE (27) in the form

τi r n = ϕi1n
∆ i1 r n(ν, ω)

∆i0n(ν, ω)
+ ϕi2n

∆ i2 r n(ν, ω)

∆i0n (ν, ω)
+

∆ i4 r n(ν, ω, u i n)

∆i 0n(ν, ω)
, (29)

where i = 1, 2, r = 1, k, (ν, ω) ∈ Λi2, ∆ i r mn(ν, ω) = det Θi r mn(ν, ω), m =
1, 2, 4. Substituting (29) into (26), we obtain

ui n(t, ν, ω) = ϕ i1n h i1n(t, ν, ω) + ϕi2n h i2n(t, ν, ω)+

+
νi√
λ i n ω

k∑
r=1

∆ i4 r n(ν, ω, u i n)

∆i0n(ν, ω)
χ i3 r n(t)+

+
1√
λ i nω

T∫
0

Hi n(t, s, ω)ui n(s, ν, ω) ds, (ν, ω) ∈ Λi 2, (30)
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where

h i j n(t, ν, ω) = χi j n(t, ω) +
νi√
λ i n ω

k∑
r=1

∆i j r n(ν, ω)

∆i0n(ν, ω)
χ i3 r n(t, ω), i, j = 1, 2,

χi 1n(t, ω) = cos
√
λ i n ω (T − t)− sin

√
λ i n ω (T − t),

χ i2n(t, ω) = cos
√
λ i n ω (T + t)− sin

√
λ i n ω (T − t),

χ i3r n (t, ω) =

T∫
0

Hi n(t, s, ω) ar(s) d s,

Hi n(t, s, ω) =

{
sin z (t+ s), z =

√
λ i n ω, t < s ≤ T,

sin z (t− s) + cos z t sin z s+ z sin z t sin z s, 0 ≤ s < t.

The relation (30) is a countable system of functional-integral equations. Substi-
tuting (30) in the Fourier series (15), we obtain a formal solution of the direct
problem (1)–(3) on the domain Ω :

Ui(t, x) =

∞∑
n=1

ϑ i n(x)
[
ϕi1n h i1n(t, ν, ω) + ϕi2n h i2n(t, ν, ω)+

+
νi√
λ i n ω

k∑
r=1

∆ i4 r n(ν, ω, u i n)

∆i 0n (ν, ω)
χ i 3 r n(t)+

+
1√
λ i n ω

T∫
0

Hi n(t, s, ω)ui n(s, ν, ω) ds

]
, (ν, ω) ∈ Λi 2 i = 1, 2. (31)

However, there are two unknown quantities ϕi1n and ϕi 2n in (31).

3. Formal solution of the inverse problem (1)-(4)

We will now formally define the redefinition functions ϕi1(x) and ϕi2(x). We
subordinate function (30) to conditions (4). For this purpose, we differentiate
(31) with respect to the time-variable t:

Ui t(t, x) =

∞∑
n=1

ϑ i n(x)
[
ϕi1n h

′
i1n(t, ν, ω) + ϕi2n h

′
i2n(t, ν, ω)+

+
νi√
λ i n ω

k∑
r=1

∆ i4 r n(ν, ω, u i n)

∆i0n(ν, ω)
χ′i3 r n(t)+
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+
1√
λ i n ω

T∫
0

H ′i n(t, s, ω)ui n(s, ν, ω) ds

]
, (ν, ω) ∈ Λi2, i = 1, 2. (32)

Then, applying intermediate conditions (4) to functions (31) and (32), we arrive
at the solution of the following SAE:{

ϕi1n [χ i1n(t1, ω) + εi11n] + ϕi2n [χ i2n(t1, ω) + εi12n] = ψ̄1n,
ϕi1n [χ′i1n(t1, ω) + εi21n] + ϕi2n [χ′i2n(t1, ω) + εi22n] = ψ̄2n,

(33)

where

ε i1j n =
νi√
λ i n ω

k∑
r=1

∆i j r n(ν, ω)

∆i0n(ν, ω)
χ i 3 r n(t1, ω),

ε i2j r n =
νi√
λ i n ω

k∑
r=1

∆i j r n(ν, ω)

∆i0n(ν, ω)
χ′i3 r n(t1, ω), j = 1, 2,

ψ̄1n = ψi1n −
νi√
λ i n ω

k∑
r=1

∆ i4 r n(ν, ω, ui n)

∆i0n(ν, ω)
χ i3 r n(t1, ω)+

+
1√
λ i n ω

T∫
0

Hi n(t1, s, ω)ui n(s, ν, ω) ds, (34)

ψ̄2n = ψi2n −
νi√
λ i n ω

k∑
r=1

∆ i4 r n(ν, ω, ui n)

∆i0n(ν, ω)
χ′i3 r(t1, ω)+

+
1√
λ i n ω

T∫
0

H ′i n(t1, s, ω)ui n(s, ν, ω) ds, i = 1, 2, (35)

ψi j n =

1∫
−1

ψ i j(x)ϑ i n(x) dx, i, j = 1, 2.

The fulfillment of the following condition provides the unique solvability of SAE
(33):

Vi0n(ω) =

∣∣∣∣ χ i1n(t1, ω) + εi11n χ i2n(t1, ω) + εi12n

χ′i1n(t1, ω) + εi21n χ′i2n(t1, ω) + εi22n

∣∣∣∣ =

= −z sin 2zT − z cos 2zT + 2z sin z(T − t1) cos z(T − t1)− z cos 2z(T − t1)−

−z εi11n[sin z(T + t1) + cos z(T − t1)]− zεi12n[sin z(T − t1) + cos z(T − t1)]−
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−εi21n[cos z(T + t1)− z sin z(T − t1)]− εi22n[sin z(T − t1)− z cos z(T − t1)]+

+εi11nεi22n − εi21nεi12n 6= 0, z =
√
λ i n ω, i = 1, 2. (36)

Before proceeding to find a solution of SAE (33), we consider condition (36).
Suppose the opposite:

Vi0n(ω) = 0, i = 1, 2. (37)

Condition (37) is a transcendental equation. Let us denote the set of its
solutions with respect to ω by =. So, on the set

Λi3 =
{

(νi n, ω) : |∆i0n(ν, ω) | > 0, νi n 6=
√
λi nω µl, i = 1, 2, ω ∈ =

}
SAE (33) is not uniquely solvable. However, on the other set

Λi4 =
{

(ν, ω) : |∆i0n(ν, ω)| > 0, |Vi0n(ω)| > 0, νi n 6=
√
λi nω µl, ω ∈ (0,∞) \ =

}
SAE (33) is uniquely solvable. Now let us start solving SAE (33). Taking into
account notations (34) and (35), we obtain

ϕi j n = ψi 1nw ij1n(ω)+ψi2nw i j2n(ω)+
νi√
λ i n ω

k∑
r=1

∆ i4 r n(ν, ω, ui n)

∆i0n(ν, ω)
w i j3 r n(ω)+

+
1√
λ i n ω

T∫
0

Wi j n(s, ω)ui n(s, ν, ω) ds, i, j = 1, 2, (ν, ω) ∈ Λi4, (38)

where

wi11n(ω) = V −1
i0n

(
χ′i2n(t1, ω) + εi22n(ω)

)
, wi12n(ω) = V −1

i0n (−χi2n(t1, ω) + εi12n(ω)) ,

wi21n(ω) = V −1
i0n

(
χ′i1n(t1, ω) + εi21n(ω)

)
, wi22n(ω) = V −1

i0n (χi1n(t1, ω) + εi11n(ω)) ,

wi13 rn(ω) = −
[
χi3r n(t1, ω)wi11n(ω) + χ′i3r n(t1, ω)wi12n(ω)

]
,

wi23 r n(ω) = −
[
χi3r n(t1, ω)wi21n(ω) + χ′i3r n(t1, ω)wi22n(ω)

]
,

Wi1n(s, ω) = Hi n(t1, s)wi11n(ω) +H ′i n(t1, s)wi 12n(ω),

Wi2n(s, ω) = Hi n(t1, s)wi21n(ω) +H ′i n(t1, s)wi 22n(ω), i = 1, 2.

Since ϕi1n and ϕi2n are the Fourier coefficients, from (38) we obtain the Fourier
series

ϕij(x) =
∞∑
n=1

ϑin(x)

[
ψi1nwij1n + ψi2nwij2n +

νi√
λinω

k∑
r=1

∆i4rn(ν, ω, uin)

∆i0n(ν, ω)
wij3rn+
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+
1√
λ i n ω

T∫
0

Wi j n(s, ω)ui n(s, ν, ω) ds

]
, (ν, ω) ∈ Λi4, i = 1, 2. (39)

The functions ui n(t, ν, ω) in (39) are the Fourier coefficients of the unknown func-
tion Ui(t, x, ν, ω). Therefore, we need to uniquely define the Fourier coefficients
ui n(t, ν, ω). Substituting (38) into (30), we finally obtain the following countable
system of functional-integral equations:

ui n(t, ν, ω) = S(t, ν, ω;ui n) ≡ ψi1n g i1n(t, ν, ω) + ψi2n g i2n(t, ν, ω)+

+
νi√
λ i n ω

k∑
r=1

∆ i4 r n(ν, ω, ui n)

∆i0n(ν, ω)
g i 3 r n(t, ω)+

+
1√
λ i n ω

T∫
0

Gi n(t, s, ν, ω)ui n(s, ν, ω) ds, (ν, ω) ∈ Λi 4, i = 1, 2, (40)

where

gi1n(t, ν, ω) = wi11n(ω)h i1n(t, ν, ω) + wi21n(ω)h i2n(t, ν, ω),

gi2n(t, ν, ω) = wi12n(ω)h i1n(t, ν, ω) + wi22n(ω)h i2n(t, ν, ω),

g i3 r n(t, ω) = gi 1n(t, ν, ω)χi3 r n(t1, ω) + gi2n(t, ν, ω)χ′i3 r n(t1, ω) + χi3 r n(t, ω),

Gi n(t, s, ν, ω) = gi1n(t, ν, ω)Hi n(t1, s, ω) +gi2n(t, ν, ω)H ′i n(t1, s, ω) +Hi n(t, s, ω).

Note that the functional-integral equations (40) make sense only for values of
parameters ν, ω from the set Λi4. In addition, the unknown functions u i n(t, ν, ω)
in (40) are under the determinant sign and under the of integral sign.

4. Solvability of the countable system of functional-integral
equations

Let us investigate the system of functional-integral equations (40) for unique
solvability. To this end, consider the following well-known Banach spaces, which
we will use in our further actions:
The space B 2 of function sequences {un(t) }∞n=1 on the segment [0, T ] with the
norm

‖u(t) ‖B 2
=

{ ∞∑
n=1

(
max
t∈[0,T ]

|un(t) |
) 2}0.5

<∞.
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The Hilbert coordinate space `2 of number sequences {ϕn}∞n=1 with the norm

‖ϕ ‖ ` 2 =

{ ∞∑
n=1

|ϕn | 2
}0.5

<∞.

The space L 2[−1, 1] of square-integrable functions on [−1, 1] with the norm

‖ϑ(x) ‖L 2[−1,1] =

{ 1∫
−1

|ϑ(x) |2 dx
}0.5

<∞.

Smoothness conditions. Let the functions ψi(x) ∈ C 3[−1, 1], i = 1, 2 have
peace-wise continuous derivatives with respect to x up to fourth order on [−1, 1].

Then, after integrating the integrand functions ψijn =
1∫
−1

ψij(x)ϑin(x)dx, i, j =

1, 2 by parts four times with respect to x, we obtain the following relation:

|ψi j n | ≤
(

1

π

)4

∣∣∣ψ (4)
i j n

∣∣∣
n4

, i, j = 1, 2, (41)

where ψ
(4)
i j n =

1∫
−1

∂ 4 ψi j(x)
∂ x4

ϑ i n(x) dx, i, j = 1, 2. Here the Bessel inequality is

valid:
∞∑
n=1

[
ψ

(4)
i j n

] 2
≤

1∫
−1

[
∂ 4 ψi(x)

∂ x4

] 2

dx, i, j = 1, 2. (42)

Theorem 1. Let the smoothness conditions and the following conditions be ful-
filled:

max
t∈[0,T ]

[| g i1n(t, ν, ω) | ; | g i2n(t, ν, ω) |] ≤ δi1 <∞, (43)

ρi = | νi | δi2

∥∥∥∥∥
k∑
r=1

∣∣∣∣ ∆̄ i4 r (ν, ω)

∆i0(ν, ω)

∣∣∣∣ δi0r
∥∥∥∥∥
`2

+ δi3 < 1, i = 1, 2, (44)

where δi0r, δi2 and δi0r will be defined by (48) and (49), while ∆̄ i4 r n (ν, ω) will
be defined by (51). Then the countable system of functional-integral equations
(40) is uniquely solvable in the space B 2. In this case, the desired solution can
be found by the following iterative process:{

u 0
i n(t, ν, ω) = ψi 1n g i 1n(t, ν, ω) + ψi 2n g i 2n(t, ν, ω),

um+1
i n (t, ν, ω) = S(t, ν, ω;umin), i = 1, 2, m = 0, 1, 2, ...

(45)
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Proof. By virtue of smoothness condition (41) and estimate (43), applying the
Cauchy–Schwartz inequality and Bessel inequality (42), from the approximations
(45) we obtain the following estimate:

∞∑
n=1

max
t∈[0,T ]

∣∣u 0
i n(t)

∣∣ ≤ ∞∑
n=1

max
t∈[0,T ]

[|ψ i 1n | · | g i 1n(t, ν, ω) |+ |ψ i 2n | · | g i 2n(t, ν, ω) |] ≤

≤ δi 1
(

1

π

)4
 ∞∑
n=1

∣∣∣ψ(4)
i 1, n

∣∣∣
n4

+

∞∑
n=1

∣∣∣ψ(4)
i 2,n

∣∣∣
n4

 ≤ δi 1( 1

π

) 4
√√√√ ∞∑

n=1

1

n8
×

×

[∥∥∥∥ ∂ 4 ψi 1(x)

∂ x4

∥∥∥∥
L 2[−1,1]

+

∥∥∥∥ ∂ 4 ψi 2(x)

∂ x4

∥∥∥∥
L 2[−1,1]

]
= δi 0 <∞. (46)

Taking into account the estimate (46), applying the Cauchy-Schwartz inequality,
for the first difference of approximations (45) we obtain:

∞∑
n=1

max
t∈[0,T ]

∣∣u 1
i n(t)− u 0

i n(t)
∣∣ ≤

≤ | νi |
∞∑
n=1

1

λ
3/2
i n ω

k∑
r=1

∣∣∣∣∣ ∆ i 4 r n

(
ν, ω, u 0

i n

)
∆i 0n(ν, ω)

∣∣∣∣∣ max
t∈[0,T ]

|g i 3 r n(t, ω)|+

+

∞∑
n=1

1

λ
3/2
i n ω

max
t∈[0,T ]

∣∣∣∣∣∣
T∫

0

Gi n(t, s, ν, ω)u 0
i n(s, ν, ω) ds

∣∣∣∣∣∣ ≤
≤ | νi | δi 2

√√√√ ∞∑
n=1

[
k∑
r=1

∣∣∣∣∣ ∆ i 4 r n

(
ν, ω, u 0

i n

)
∆i 0n(ν, ω)

∣∣∣∣∣ δi 0 r
]2

+ δi 3δi 0 <∞, (47)

where

δi 0 ≥ max
t∈[0,T ]

|gi 3 r n(t, ω)| , δi 2 =

√√√√ ∞∑
n=1

1

λ3
i nω

2
, (48)

δ i 3 =

√√√√√ ∞∑
n=1

max
t∈[0,T ]

 1

λ
3/2
i n ω

T∫
0

|Gi n(t, s, ν, ω) | ds

2

, i = 1, 2. (49)

Continuing this process, similarly to the estimate (47) we obtain

∞∑
n=1

max
t∈[0,T ]

∣∣um+1
i n (t)− umin(t)

∣∣ ≤
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≤ | νi | δ i 2

√√√√ ∞∑
n=1

[
k∑
r=1

∣∣∣∣∣ ∆ i 4 r n (ν, ω, umin)−∆ i 4 r n

(
ν, ω, um−1

i n

)
∆i 0n(ν, ω)

∣∣∣∣∣ δi 0r
]2

+

+δi 3

√√√√ ∞∑
n=1

max
t∈[0,T ]

∣∣umin(t, ν, ω)− um−1
i n (t, ν, ω)

∣∣2 ≤
≤ | νi | δi 2

√√√√ ∞∑
n=1

[
k∑
r=1

∣∣∣∣ ∆̄ i 4 r n (ν, ω)

∆i 0n(ν, ω)

∣∣∣∣ δi 0r
]2 ∥∥umi (t, ν, ω)− um−1

i (t, ν, ω)
∥∥
B2

+

+δi3
∥∥umi (t, ν, ω)− um−1

i (t, ν, ω)
∥∥
B2
≤ ρi

∥∥umi (t, ν, ω)− um−1
i (t, ν, ω)

∥∥
B2
, (50)

where

ρi = | νi | δi 2

∥∥∥∥∥
k∑
r=1

∣∣∣∣ ∆̄ i 4 r n (ν, ω)

∆i 0n(ν, ω)

∣∣∣∣ δi 0r
∥∥∥∥∥
`2

+ δi 3, i = 1, 2, ∆̄ i 4 r n (ν, ω) =

∣∣∣∣∣∣∣∣
1− νi

λ̄
σi311n ... νi

λ̄
σi31(j−1)n σ̄i41n

νi
λ̄
σi31(j+1)n ... νi

λ̄
σi31kn

νi
λ̄
σi32 1n ... νi

λ̄
σi32(j−1)n σ̄i42n

νi
λ̄
σi32(j+1)n ... νi

λ̄
σi32kn

... ... ... ... ... ... ...
νi
λ̄
σi3k1n ... νi

λ̄
σi3k(j−1)n σ̄i4kn

νi
λ̄
σi3k(j+1)n ... 1− νi

λ̄
σi3kkn

∣∣∣∣∣∣∣∣ , (51)

σ̄ i4 r n =
1

λ̄

T∫
0

| br(s) |
T∫

0

|Hi n(s, θ, ω)α(θ) | dθ ds.

According to the condition (44), ρi < 1. Consequently, it follows from the es-
timate (50) that the operator on the right-hand side of the countable system of
functional-integral equations (40) is contracting. Then the estimates (46), (47)
and (50) imply that there is a unique fixed point, which is a solution to (40) in
the space B 2. Theorem 1 is proved. J

5. Uniform convergence of series

Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then the series in (39)
are convergent in [−1, 1].

Proof. According to the Theorem 1, u i n(t, ν, ω) ∈ B2 is a solution of the
system (40). As in the case of estimates (46) and (50), we obtain

|ϕ i j(x) | ≤
(

1

π

) 4

δi 1δi 2

[∥∥∥∥ ∂ 4 ψi 1(x)

∂ x4

∥∥∥∥
L 2[−1,1]

+

∥∥∥∥ ∂ 4 ψi 2(x)

∂ x4

∥∥∥∥
L 2[−1,1]

]
+
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+ |νi| δi2

√√√√ ∞∑
n=1

[
k∑
r=1

∣∣∣∣∆i4rn(ν, ω, uin)

∆i0n(ν, ω)

∣∣∣∣ δi0r
]2

+ δi3 ‖ui(t, ν, ω)‖B2
<∞, (52)

where i, j = 1, 2. The estimate (52) implies the absolute convergence of the series
(39). Hence, it is obvious that |ϕj(x) | ≤ |ϕ 1 j(x) |+ |ϕ 2j(x) | <∞, j = 1, 2. J

Substituting the system (40) into the Fourier series (15), we obtain

Ui(t, x) =

∞∑
n=1

ϑ i n(x) [ψi 1n g i 1n(t, ν, ω) + ψi 2n g i 2n(t, ν, ω)+

+
νi√
λ i n ω

k∑
r=1

∆ i 4 r n(ν, ω, ui n)

∆i 0n (ν, ω)
g i 3 r n(t, ω)+

+
1√
λ i n ω

T∫
0

Gi n(t, s, ν, ω)u i n(s, ν, ω) ds

]
, (ν, ω) ∈ Λi 4, i = 1, 2. (53)

Theorem 3. Let the conditions of Theorem 1 be fulfilled. Then the main un-
known function U(t, x) = U1(t, x) + U2(t, x) of the inverse problem (1)–(4) is
defined by the Fourier series (53), and this series (53) converges absolutely in
the domain Ω for all (ν, ω) ∈ Λ i 4. Moreover, the function (53) belongs to the
class C (Ω) ∩ C2,2

t,x (Ω).

The proof of Theorem 3 is similar that of Theorem 2.

6. Conclusion

In the rectangular domain Ω = {0 < t < T, −1 < x < 1}, we consider an
inhomogeneous hyperbolic type integro-differential equation (1) with degenerate
kernel, two redefinition functions (3) given at the endpoint of the segment and
involution. To find these redefinition functions, we use intermediate data (4). We
also use Dirichlet boundary value conditions (2) with respect to spatial variable x.
The Fourier method of separation of variables is applied. The countable system of
functional-integral equations (40) is obtained. Theorem 1 on unique solvability of
countable system of functional-integral equations (40) is proved. The method of
successive approximations is used in combination with the method of contraction
mappings. The triple of solutions of the inverse problem is obtained in the form of
Fourier series (39) and (53). The absolute convergence of Fourier series is proved
(Theorems 2 and 3).
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Remark 1. For values of parameters (ν, ω) from the set Λi3, the uniqueness of
the solution to the inverse problem (1)–(4) is violated. Because condition (36) is
not satisfied in this case.

Remark 2. For values of parameters (ν, ω) from the set Λi1, the inverse problem
(1)–(4) does not make sense. Because condition (28) is not satisfied in this case.
But, the direct problem (1)–(3) has an infinite set of solutions, if ϕ1(x) = ϕ2(x) =
0 for all x ∈ [−1, 1] and α(t) ≡ 0 for all t ∈ [0, T ].
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