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Abstract. In this work, we introduce the concept of ∗-operator frame, which is a gener-
alization of ∗-frames in Hilbert pro-C∗-modules, and we establish some results. We also
study the tensor product of ∗-operator frame for Hilbert pro-C∗-modules.
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1. Introduction

In 1952, Duffin and Schaeffer [3] introduced the notion of frame in nonhar-
monic Fourier analysis. In 1986 the work of Duffin and Schaeffer was continued
by Grossman and Meyer [8]. After their works, the theory of frame was developed
and has been popular.

The notion of frame on Hilbert space has been successfully extended to frames
in Hilbert pro-C∗-modules. In 2008, Joita [10] proposed the concept of frames of
multipliers in pro-C∗-Hilbert modules and demonstrated that many properties of
frames in Hilbert C∗-modules are preserved in these frames of multipliers.

The concept of ∗-frames was introduced by Alijani and Dehghan [1], providing
a significant advancement in the theory of frames in Hilbert spaces. Building
upon this, the notion of ∗-operator frames was developed as a generalization of
∗-frames, extending the framework to more complex structures within the realm
of operator theory.

The first purpose of this paper is to give the definition of ∗-operator frame in
pro-C∗-modules and some properties.

The second purpose is to investigate the tensor product of Hilbert pro-C∗-
modules, and to show that tensor product of ∗-operator frames for Hilbert pro-
C∗-modules X and Y, present ∗-operator frame for X ⊗ Y.

∗Corresponding author.

http://www.azjm.org 79 © 2010 AZJM All rights reserved.



80 R. El Jazzar, S. Kabbaj, M. Rossafi

In the next section, we give some definitions and basic properties of Hilbert
C∗-modules.

2. Preliminaries

The basic information about pro-C∗-algebras can be found in the works [5, 6,
7, 9, 12, 13, 14].

C∗-algebra whose topology is induced by a family of continuous C∗-seminorms
instead of a C∗-norm is called pro-C∗-algebra. Hilbert pro-C∗-modules are gen-
eralizations of Hilbert spaces by allowing the inner product to take values in a
pro-C∗-algebra rather than in the field of complex numbers.

Pro-C∗-algebra is defined as a complete Hausdorff complex topological ∗-
algebra A whose topology is determined by its continuous C∗-seminorms in the
sense that a net {aα} converges to 0 if and only if p(aα) converges to 0 for all
continuous C∗-seminorms p on A (see [4, 9, 11, 14]), and

1) p(ab) ≤ p(a)p(b),

2) p(a∗a) = p(a)2,

for all a, b ∈ A.

If the topology of pro-C∗-algebra is determined by only countably many C∗-
seminorms, then it is called a σ-C∗-algebra.

We denote by sp(a) the spectrum of a such that sp(a) = {λ ∈ C : λ1A − a is
not invertible} for all a ∈ A, where A is a unital pro-C∗-algebra with an identity
1A.

The set of all continuous C∗-seminorms on A is denoted by S(A). A+ denotes
the set of all positive elements of A.

Example 1. Every C∗-algebra is a pro-C∗-algebra.

Proposition 1. [9] Let A be a unital pro-C∗-algebra with an identity 1A. Then
for any p ∈ S(A), we have:

(1) p(a) = p(a∗) for all a ∈ A,

(2) p (1A) = 1,

(3) If a, b ∈ A+ and a ≤ b, then p(a) ≤ p(b),

(4) If 1A ≤ b, then b is invertible and b−1 ≤ 1A,

(5) If a, b ∈ A+ are invertible and 0 ≤ a ≤ b, then 0 ≤ b−1 ≤ a−1,
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(6) If a, b, c ∈ A and a ≤ b, then c∗ac ≤ c∗bc,

(7) If a, b ∈ A+ and a2 ≤ b2, then 0 ≤ a ≤ b.

Definition 1. [14] A pre-Hilbert module over pro-C∗-algebra A, is a complex
vector space E, which is also a left A-module compatible with the complex algebra
structure, equipped with an A-valued inner product ⟨., .⟩ E × E → A, which is
C-and A-linear in its first variable and satisfies the following conditions:

1) ⟨ξ, η⟩∗ = ⟨η, ξ⟩ for every ξ, η ∈ E,

2) ⟨ξ, ξ⟩ ≥ 0 for every ξ ∈ E,

3) ⟨ξ, ξ⟩ = 0 if and only if ξ = 0,

for all ξ, η ∈ E. We say E is a Hilbert A-module (or Hilbert pro-C∗-module
over A) if it is complete with respect to the topology determined by the family of
seminorms

p̄E(ξ) =
√

p(⟨ξ, ξ⟩) ξ ∈ E, p ∈ S(A).

Let A be a pro-C∗-algebra and let X and Y be Hilbert A-modules and assume
that I and J are countable index sets. A bounded A-module map from X to Y is
called an operator from X to Y. We denote the set of all operators from X to Y
by HomA(X ,Y).

Definition 2. [2] An A-module map T : X −→ Y is adjointable if there is a map
T ∗ : Y −→ X such that ⟨Tξ, η⟩ = ⟨ξ, T ∗η⟩ for all ξ ∈ X , η ∈ Y, and is called
bounded if for all p ∈ S(A) there is Mp > 0 such that p̄Y(Tξ) ≤ Mpp̄X (ξ) for all
ξ ∈ X .

We denote by Hom∗
A(X ,Y) the set of all adjointable operators from X to Y,

and Hom∗
A(X ) = Hom∗

A(X ,X ).

Definition 3. [2] Let A be a pro-C∗-algebra and X ,Y be two Hilbert A-modules.
The operator T : X → Y is called uniformly bounded below, if there exists C > 0
such that for each p ∈ S(A),

p̄Y(Tξ) ⩽ Cp̄X (ξ), for all ξ ∈ X ,

and is called uniformly bounded above if there exists C ′ > 0 such that for each
p ∈ S(A),

p̄Y(Tξ) ⩾ C ′p̄X (ξ), for all ξ ∈ X ,

∥T∥∞ = inf{M : M is an upper bound for T},
p̂Y(T ) = sup {p̄Y(T (x)) : ξ ∈ X , p̄X (ξ) ⩽ 1} .

It’s clear that p̂(T ) ⩽ ∥T∥∞ for all p ∈ S(A).
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Proposition 2. [2]. Let X be a Hilbert module over pro-C∗-algebra A and T be
an invertible element in Hom∗

A(X ) such that both are uniformly bounded. Then
for each ξ ∈ X , ∥∥T−1

∥∥−2

∞ ⟨ξ, ξ⟩ ≤ ⟨Tξ, Tξ⟩ ≤ ∥T∥2∞⟨ξ, ξ⟩.

Similar to C∗-algebra, the ∗-homomorphism between two pro-C∗-algebras is
increasing.

Lemma 1. If φ : A −→ B is an ∗-homomorphism between pro-C∗-algebras, then
φ is increasing, that is, if a ≤ b, then φ(a) ≤ φ(b).

3. ∗-operator frame for Hom∗
A(X )

Definition 4. A family of adjointable operators {Ti}i∈J on a Hilbert A-module
X over a unital pro-C∗-algebra is said to be an operator frame for Hom∗

A(X ), if
there exist positive constants A,B > 0 such that

A⟨ξ, ξ⟩ ≤
∑
i∈J

⟨Tiξ, Tiξ⟩ ≤ B⟨ξ, ξ⟩,∀ξ ∈ X . (1)

The numbers A and B are called lower and upper bounds of the operator frame,
respectively. If A = B = λ, the operator frame is λ-tight. If A = B = 1, it is
called a normalized tight operator frame or a Parseval operator frame. If only
upper inequality of (1) holds, then {Ti}i∈J is called an operator Bessel sequence
for Hom∗

A(X ).

Definition 5. A family of adjointable operators {Ti}i∈I on a Hilbert A-module
X over a pro-C∗-algebra is said to be an ∗-operator frame for Hom∗

A(X ), if there
exist two strictly nonzero elements A and B in A such that

A⟨ξ, ξ⟩A∗ ≤
∑
i∈I

⟨Tiξ, Tiξ⟩ ≤ B⟨ξ, ξ⟩B∗,∀ξ ∈ X . (2)

The elements A and B are called lower and upper bounds of the ∗-operator frame,
respectively. If A = B = λ, the ∗-operator frame is λ-tight. If A = B = 1A, it is
called a normalized tight ∗-operator frame or a Parseval ∗-operator frame. If only
upper inequality of (2) holds, then {Ti}i∈i is called an ∗-operator Bessel sequence
for Hom∗

A(X ).

We mentioned that the set of all operator frames for Hom∗
A(X ) can be consid-

ered as a subset of ∗-operator frame. To illustrate this, let {Tj}i∈I be an operator
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frame for Hilbert A-module X with operator frame real bounds A and B. Note
that for ξ ∈ X ,

(
√
A)1A⟨ξ, ξ⟩(

√
A)1A ≤

∑
i∈I

⟨Tiξ, Tiξ⟩ ≤ (
√
B)1A⟨ξ, ξ⟩(

√
B)1A.

Therefore, every operator frame for Hom∗
A(X ) with real bounds A and B is an

∗-operator frame for Hom∗
A(X ) with A-valued ∗-operator frame bounds (

√
A)1A

and (
√
B)1B.

Example 2. Let A be a Hilbert pro-C∗-module over itself with the inner product
⟨a, b⟩ = ab∗. Let {ξi}i∈I be an ∗-frame for A with bounds A and B, respectively.
For each i ∈ I, we define Ti : A → A by Tiξ = ⟨ξ, ξi⟩, ∀ξ ∈ A. Ti is adjointable
and T ∗

i a = aξi for each a ∈ A. And we have

A⟨ξ, ξ⟩A∗ ≤
∑
i∈I

⟨ξ, ξi⟩⟨ξi, ξ⟩ ≤ B⟨ξ, ξ⟩B∗, ∀ξ ∈ A.

Then
A⟨ξ, ξ⟩A∗ ≤

∑
i∈I

⟨Tiξ, Tiξ⟩ ≤ B⟨ξ, ξ⟩B∗,∀ξ ∈ A.

So {Ti}i∈I is an ∗-operator frame in A with bounds A and B, respectively.

Similar to ∗-frames, we introduce the ∗-operator frame transform and ∗-frame
operator and establish some properties.

Theorem 1. Let {Ti}i∈I ⊂ Hom∗
A(X ) be an ∗-operator frame with lower and

upper bounds A and B, respectively. The ∗-operator frame transform R : X →
l2(X ) defined by Rξ = {Tiξ}i∈I is injective and closed range adjointable A-module
map and p̄X (R) ≤ p̄X (B). The adjoint operator R∗ is surjective and it is given
by R∗({ξi}i∈I) =

∑
i∈I T

∗
i ξi for all {ξi}i∈I in l2(X ).

Proof. By the definition of norm in l2(X ),

p̄X (Rξ)2 = p(
∑
i∈I

⟨Tiξ, Tiξ⟩) ≤ p̄X (B)2p(⟨ξ, ξ⟩), ∀ξ ∈ X . (3)

This inequality implies that R is well defined and p̄X (R) ≤ p̄X (B). Clearly, R is a
linear A-module map. We now show that the range of R is closed. Let {Rξn}n∈N
be a sequence in the range of R such that limn→∞Rξn = η. For n,m ∈ N, we
have

p(A⟨ξn − ξm, ξn − ξm⟩A∗) ≤ p(⟨R(ξn − ξm), R(ξn − ξm)⟩) = p̄X (R(ξn − ξm))2.
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Since {Rξn}n∈N is a Cauchy sequence in X , we have
p(A⟨ξn − ξm, ξn − ξm⟩A∗) → 0, as n,m → ∞.
Note that for n,m ∈ N,

p(⟨ξn − ξm, ξn − ξm⟩) = p(A−1A⟨ξn − ξm, ξn − ξm⟩A∗(A∗)−1)

≤ p(A−1)2p(A⟨ξn − ξm, ξn − ξm⟩A∗).

Therefore the sequence {ξn}n∈N is Cauchy and hence there exists ξ ∈ X such
that ξn → ξ as n → ∞. Again by (3), we have

p̄X (R(ξn − ξm))2 ≤ p̄X (B)2p(⟨ξn − ξ, ξn − ξ⟩).

Thus p(Rξn − Rξ) → 0 as n → ∞ implies that Rξ = η. It follows that the
range of R is closed. Next we show that R is injective. Suppose that ξ ∈ X and
Rξ = 0. Note that A⟨ξ, ξ⟩A∗ ≤ ⟨Rξ,Rξ⟩. Then ⟨ξ, ξ⟩ = 0, so ξ = 0, i.e. R is
injective.

For ξ ∈ X and {ξi}i∈I ∈ l2(X ), we have

⟨Rξ, {ξi}i∈I⟩ = ⟨{Tiξ}i∈I , {ξi}i∈I⟩ =
∑
i∈I

⟨Tiξ, ξi⟩ =
∑
i∈I

⟨ξ, T ∗
i ξi⟩ = ⟨ξ,

∑
i∈I

T ∗
i ξi⟩.

Then R∗({ξi}i∈I) =
∑

i∈I T
∗
i ξi. By injectivity of R, the operator R∗ has closed

range and X = range(R∗), which completes the proof. ◀

Now we define ∗-frame operator and we study some of its properties.

Definition 6. Let {Ti}i∈I ⊂ Hom∗
A(X ) be an ∗-operator frame with ∗-operator

frame transform R and lower and upper bounds A and B, respectively. The ∗-
frame operator S : X → X is defined by Sξ = R∗Rξ =

∑
i∈I T

∗
i Tiξ, ∀ξ ∈ X .

The following lemma is used to prove the next results.

Lemma 2. Let X and Y be two Hilbert A-modules and T ∈ Hom∗
A(X ,Y).

(i) If T is injective and T has a closed range, then the adjointable map T ∗T is
invertible and

p̄X (T
∗T−1)−1IX ≤ T ∗T ≤ p̄X (T )

2IX .

(ii) If T is surjective, then the adjointable map TT ∗ is invertible and

p̄X ((TT
∗)−1)−1IY ≤ TT ∗ ≤ p̄X (T )

2IY .

Proof.
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1. Since the adjointable map T ∗ is surjective, it follows that for any ξ ∈
X there exists η ∈ Y such that T ∗η = ξ. Since Y = kerT ∗ ⊕ ImT , it
follows that η = η1 + Th for some η1 ∈ kerT ∗ and some h ∈ X . Thus,
ξ = T ∗ (η1 + Th) = T ∗Th, and hence T ∗T is surjective. If T ∗Tξ = 0,
then Tξ ∈ kerT ∗ ∩ ImT = {0}, which implies that ξ = 0. Therefore,
T ∗T is an injective positive map. Hence, T ∗T is an invertible element of
the set of all bounded A-module maps, 0 ≤ (T ∗T )−1 ≤ p̄X ((T

∗T )−1) and
0 ≤ (T ∗T ) ≤ p̄X ((T

∗T )). Therefore, p̄X ((T
∗T )−1)−1 ≤ T ∗T ≤ p̄X (T )

2

2. Let T be surjective. Then T ∗ is injective and has a closed range. By substi-
tuting T ∗ for T in (1), we see that TT ∗ is invertible and p̄X ((TT

∗)−1)−1 ≤
TT ∗ ≤ p̄X (T )

2.

◀

Theorem 2. The ∗-operator frame S is bounded, positive, self-adjoint, invertible
and p̄X (A

−1)−2 ≤ p̄X (S) ≤ p̄X (B)2.

Proof.
By definition we have, ∀ξ, η ∈ X :

⟨Sξ, η⟩ =

〈∑
i∈I

T ∗
i Tiξ, η

〉
=

∑
i∈I

⟨T ∗
i Tiξ, η⟩

=
∑
i∈I

⟨ξ, T ∗
i Tiη⟩

=

〈
ξ,
∑
i∈I

T ∗
i Tiη

〉
= ⟨ξ, Sη⟩.

Then S is selfadjoint.
By Lemma 2 and Theorem 1, S is invertible. Clearly S is positive.
By definition of an ∗-operator frame, we have

A⟨ξ, ξ⟩A∗ ≤
∑
i∈I

⟨Tiξ, Tiξ⟩ ≤ B⟨ξ, ξ⟩B∗.

So
A⟨ξ, ξ⟩A∗ ≤ ⟨Sξ, ξ⟩ ≤ B⟨ξ, ξ⟩B∗.
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Then
p̄X (A

−1)−2p̄X (ξ)
2 ≤ p̄X (⟨Sξ, ξ⟩) ≤ p̄X (B)2p̄X (ξ)

2, ∀ξ ∈ X .

If we take supremum on all ξ ∈ X , where p̄X (ξ) ≤ 1, then p̄X (A
−1)−2 ≤ p̄X (S) ≤

p̄X (B)2. ◀

Corollary 1. Let {Ti}i∈I ⊂ Hom∗
A(X ) be an ∗-operator frame with ∗-operator

frame transform R and lower and upper bounds A and B, respectively. Then
{Ti}i∈I is an operator frame for X with lower and upper bounds p̄X ((R

∗R)−1)−1

and p̄X (R)2, respectively.

Proof. By Theorem 1, R is injective and has a closed range, and by Lemma 2

p̄X ((R
∗R)−1)−1IX ≤ R∗R ≤ p̄X (R)2IX .

So
p̄X ((R

∗R)−1)−1⟨ξ, ξ⟩ ≤
∑
i∈I

⟨Tiξ, Tiξ⟩ ≤ p̄X (R)2⟨ξ, ξ⟩, ∀x ∈ X .

Then {Ti}i∈I is an operator frame for X with lower and upper bounds p̄X ((R
∗R)−1)−1

and p̄X (R)2, respectively. ◀

Theorem 3. Let {Ti}i∈I ⊂ Hom∗
A(X ) be an ∗-operator frame for X , with lower

and upper bounds A and B, respectively, and with ∗-frame operator S. Let θ ∈
Hom∗

A(X ) be injective and have a closed range. Then {Tiθ}i∈I is an ∗-operator
frame for X with ∗-frame operator θ∗Sθ with bounds p̄X ((θ

∗θ)−1)−
1
2A, p̄X (θ)B.

Proof. We have

A⟨θξ, θξ⟩A∗ ≤
∑
i∈I

⟨Tiθξ, Tiθξ⟩ ≤ B⟨θξ, θξ⟩B∗,∀ξ ∈ X . (4)

Using Lemma 2, we have p̄X ((θ
∗θ)−1)−1⟨ξ, ξ⟩ ≤ ⟨θξ, θξ⟩, ∀ξ ∈ X . This implies

p̄X ((θ
∗θ)−1)−

1
2A⟨ξ, ξ⟩(p̄X ((θ∗θ)−1)−

1
2A)∗ ≤ A⟨θξ, θξ⟩A∗, ∀ξ ∈ X . (5)

And we know that ⟨θξ, θξ⟩ ≤ p̄X (θ)
2⟨ξ, ξ⟩, ∀ξ ∈ X . This implies that

B⟨θξ, θξ⟩B∗ ≤ p̄X (θ)B⟨ξ, ξ⟩(p̄X (θ)B)∗,∀ξ ∈ X . (6)

Using (4), (5), (6), we have

p̄X ((θ
∗θ)−1)−

1
2A⟨ξ, ξ⟩(p̄X ((θ∗θ)−1)−

1
2A)∗ ≤

∑
i∈I

⟨Tiθx, Tiθξ⟩
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≤ p̄X (θ)B⟨ξ, ξ⟩(p̄X (θ)B)∗,∀ξ ∈ X .

So {Tiθ}i∈I is an ∗-operator frame for X .

Moreover, for every ξ ∈ X , we have

θ∗Sθξ = θ∗
∑
i∈I

T ∗
i Tiθξ =

∑
i∈I

θ∗T ∗
i Tiθξ =

∑
i∈I

(Tiθ)
∗(Tiθ)ξ.

This completes the proof. ◀

Corollary 2. Let {Ti}i∈I ⊂ Hom∗
A(X ) be an ∗-operator frame for X , with ∗-

frame operator S. Then {TiS
−1}i∈I is an ∗-operator frame for X .

Proof. The proof follows from Theorem 3 by taking θ = S−1. ◀

Corollary 3. Let {Ti}i∈I ⊂ Hom∗
A(X ) be an ∗-operator frame for X , with ∗-

frame operator S. Then {TiS
− 1

2 }i∈I is a Parseval ∗-operator frame for X .

Proof. The proof follows from Theorem 3 by taking θ = S− 1
2 . ◀

Theorem 4. Let {Ti}i∈I ⊂ Hom∗
A(X ) be an ∗-operator frame for X , with lower

and upper bounds A and B, respectively. Let θ ∈ Hom∗
A(X ) be surjective. Then

{θTi}i∈I is an ∗-operator frame for X with bounds Ap̄X ((θθ
∗)−1)−

1
2 , Bp̄X (θ).

Proof. By the definition of ∗-operator frame, we have

A⟨ξ, ξ⟩A∗ ≤
∑
i∈I

⟨Tiξ, Tiξ⟩ ≤ B⟨ξ, ξ⟩B∗,∀ξ ∈ X . (7)

Using Lemma 2, we have

p̄X ((θθ
∗)−1)−1⟨Tiξ, Tiξ⟩ ≤ ⟨θTix, θTiξ⟩ ≤ p̄2X ⟨Tiξ, Tiξ⟩, ∀ξ ∈ X . (8)

Using (7), (8), we have

p̄X ((θθ
∗)−1)−

1
2A⟨ξ, ξ⟩(p̄X ((θθ∗)−1)−

1
2A)∗ ≤

∑
i∈I

⟨θTiξ, θTiξ⟩

≤ Bp̄X (θ)⟨ξ, ξ⟩(Bp̄X (θ))
∗,∀ξ ∈ X .

So {θTi}i∈I is an ∗-operator frame for X . ◀
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Theorem 5. Let (X ,A, ⟨., .⟩A) and (X ,B, ⟨., .⟩B) be two Hilbert pro-C∗-modules
and let φ : A −→ B be an ∗-homomorphism and θ be a map on X such that
⟨θξ, θη⟩B = φ(⟨ξ, η⟩A) for all ξ, η ∈ X . Also, suppose that {Ti}i∈I ⊂ Hom∗

A(X )
is an ∗-operator frame for (X ,A, ⟨., .⟩A) with ∗-frame operator SA and lower
and upper ∗-operator frame bounds A, B, respectively. If θ is surjective and
θTi = Tiθ for each i in I, then {Ti}i∈I is an ∗-operator frame for (X ,B, ⟨., .⟩B)
with ∗-frame operator SB and lower and upper ∗-operator frame bounds φ(A),
φ(B), respectively, and ⟨SBθξ, θη⟩B = φ(⟨SAξ, η⟩A).

Proof. Let η ∈ X . Then there exists ξ ∈ X such that θξ = η (θ is surjective).
By the definition of ∗-operator frames we have

A⟨ξ, ξ⟩AA∗ ≤
∑
i∈I

⟨Tiξ, Tiξ⟩A ≤ B⟨ξ, ξ⟩AB∗.

By Lemma 1 we have

φ(A⟨ξ, ξ⟩AA∗) ≤ φ(
∑
i∈I

⟨Tiξ, Tiξ⟩A) ≤ φ(B⟨ξ, ξ⟩AB∗).

By the definition of ∗-homomorphism, we have

φ(A)φ(⟨ξ, ξ⟩A)φ(A∗) ≤
∑
i∈I

φ(⟨Tiξ, Tiξ⟩A) ≤ φ(B)φ(⟨ξ, ξ⟩A)φ(B∗).

From the relationship between θ and φ we get

φ(A)⟨θξ, θξ⟩Bφ(A)∗ ≤
∑
i∈I

⟨θTiξ, θTiξ⟩B ≤ φ(B)⟨θξ, θξ⟩Bφ(B)∗.

From the relationship between θ and Ti we have

φ(A)⟨θξ, θξ⟩Bφ(A)∗ ≤
∑
i∈I

⟨Tiθξ, Tiθξ⟩B ≤ φ(B)⟨θξ, θξ⟩Bφ(B)∗.

Then

φ(A)⟨η, η⟩B(φ(A))∗ ≤
∑
i∈I

⟨Tiη, Tiη⟩B ≤ φ(B)⟨η, η⟩B(φ(B))∗, ∀η ∈ X .
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On the other hand, we have

φ(⟨SAξ, η⟩A) = φ(⟨
∑
i∈I

T ∗
i Tiξ, η⟩A)

=
∑
i∈I

φ(⟨Tiξ, Tiη⟩A)

=
∑
i∈I

⟨θTiξ, θTiη⟩B

=
∑
i∈I

⟨Tiθξ, Tiθη⟩B

= ⟨
∑
i∈I

T ∗
i Tiθξ, θη⟩B

= ⟨SBθξ, θη⟩B,

which completes the proof. ◀

4. Tensor product

The minimal or injective tensor product of the pro-C∗-algebras A and B,
denoted by A ⊗ B, is the completion of the algebraic tensor product A ⊗alg B
with respect to the topology determined by a family of C∗-seminorms. Suppose
that X is a Hilbert module over a pro-C∗-algebra A and Y is a Hilbert module
over a pro-C∗-algebra B. The algebraic tensor product X ⊗alg Y of X and Y is
a pre-Hilbert A⊗ B-module with the action of A⊗ B on X ⊗alg Y defined by

(ξ ⊗ η)(a⊗ b) = ξa⊗ ηb for all ξ ∈ X , η ∈ Y, a ∈ A and b ∈ B

and the inner product

⟨·, ·⟩ : (X ⊗alg Y)× (X ⊗alg Y) → A⊗alg B. defined by

⟨ξ1 ⊗ η1, ξ2 ⊗ η2⟩ = ⟨ξ1, ξ2⟩ ⊗ ⟨η1, η2⟩

We also know that for z =
∑n

i=1 ξi ⊗ ηi in X ⊗alg Y we have ⟨z, z⟩A⊗B =∑
i,j⟨ξi, ξj⟩A ⊗ ⟨ηi, ηj⟩B ≥ 0 and ⟨z, z⟩A⊗B = 0 iff z = 0.

The external tensor product of X and Y is the Hilbert module X ⊗Y over A⊗B
obtained by the completion of the pre-Hilbert A⊗ B-module X ⊗alg Y.

If P ∈ M(X ) and Q ∈ M(Y), then there is a unique adjointable module
morphism P ⊗Q : A⊗B → X ⊗Y such that (P ⊗Q)(a⊗ b) = P (a)⊗Q(b) and
(P ⊗Q)∗(a⊗ b) = P ∗(a)⊗Q∗(b) for all a ∈ A and for all b ∈ B (see, for example,
[10]). Let I and J be countable index sets.
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Theorem 6. Let X and Y be two Hilbert pro-C∗-modules over pro-C∗-algebras
A and B, respectively. Let {Ti}i∈I ⊂ Hom∗

A(X ) and {Lj}j∈J ⊂ Hom∗
B(Y) be two

∗-operator frames for X and Y with ∗-frame operators ST and SL and ∗-operator
frame bounds (A,B) and (C,D), respectively. Then {Ti ⊗ Lj}i∈I,j∈J is an ∗-
operator frame for Hilbert A ⊗ B-module X ⊗ Y with ∗-frame operator ST ⊗ SL

and lower and upper ∗-operator frame bounds A⊗ C and B ⊗D, respectively.

Proof. By the definition of ∗-operator frames {Ti}i∈I and {Lj}j∈J , we have

A⟨ξ, ξ⟩AA∗ ≤
∑
i∈I

⟨Tiξ, Tiξ⟩A ≤ B⟨ξ, ξ⟩AB∗,∀ξ ∈ X ,

and

C⟨η, η⟩BC∗ ≤
∑
j∈J

⟨Ljη, Ljη⟩B ≤ D⟨η, η⟩BD∗, ∀η ∈ Y.

Therefore,
(A⟨ξ, ξ⟩AA∗)⊗ (C⟨η, η⟩BC∗)

≤
∑
i∈I

⟨Tiξ, Tiξ⟩A ⊗
∑
j∈J

⟨Ljη, Ljη⟩B

≤ (B⟨ξ, ξ⟩AB∗)⊗ (D⟨η, η⟩BD∗),∀ξ ∈ X ,∀η ∈ Y.

Then
(A⊗ C)(⟨ξ, ξ⟩A ⊗ ⟨η, η⟩B)(A∗ ⊗ C∗)

≤
∑

i∈I,j∈J
⟨Tiξ, Tiξ⟩A ⊗ ⟨Ljη, Ljη⟩B

≤ (B ⊗D)(⟨ξ, ξ⟩A ⊗ ⟨η, η⟩B)(B∗ ⊗D∗), ∀ξ ∈ X , ∀η ∈ Y.

Consequently, we have

(A⊗ C)⟨ξ ⊗ η, ξ ⊗ η⟩A⊗B(A⊗ C)∗

≤
∑

i∈I,j∈J
⟨Tiξ ⊗ Ljη, Tiξ ⊗ Ljη⟩A⊗B

≤ (B ⊗D)⟨ξ ⊗ η, ξ ⊗ η⟩A⊗B(B ⊗D)∗,∀ξ ∈ X , ∀η ∈ Y.

Then for all ξ ⊗ η ∈ X ⊗ Y we have

(A⊗ C)⟨ξ ⊗ η, ξ ⊗ η⟩A⊗B(A⊗ C)∗

≤
∑

i∈I,j∈J
⟨(Ti ⊗ Lj)(ξ ⊗ η), (Ti ⊗ Lj)(ξ ⊗ η)⟩A⊗B

≤ (B ⊗D)⟨ξ ⊗ η, ξ ⊗ η⟩A⊗B(B ⊗D)∗.
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The last inequality is satisfied for every finite sum of elements in X ⊗alg Y and
then it’s satisfied for all z ∈ X ⊗ Y. It shows that {Ti⊗Lj}i∈I,j∈J is an ∗-operator
frame for Hilbert A ⊗ B-module X ⊗ Y with lower and upper ∗-operator frame
bounds A⊗ C and B ⊗D, respectively.

By the definition of ∗-frame operators ST and SL, we have:

ST ξ =
∑
i∈I

T ∗
i Tiξ,∀ξ ∈ X ,

and

SLη =
∑
j∈J

L∗
jLjη,∀η ∈ Y.

Therefore,

(ST ⊗ SL)(ξ ⊗ η) = ST ξ ⊗ SLη

=
∑
i∈I

T ∗
i Tiξ ⊗

∑
j∈J

L∗
jLjη

=
∑

i∈I,j∈J
T ∗
i Tiξ ⊗ L∗

jLjη

=
∑

i∈I,j∈J
(T ∗

i ⊗ L∗
j )(Tiξ ⊗ Ljη)

=
∑

i∈I,j∈J
(T ∗

i ⊗ L∗
j )(Ti ⊗ Lj)(ξ ⊗ η)

=
∑

i∈I,j∈J
(Ti ⊗ Lj)

∗)(Li ⊗ Lj)(ξ ⊗ η).

Now by the uniqueness of ∗-frame operator, the last expression is equal to ST⊗L(ξ⊗
η). Consequently we have (ST ⊗ SL)(ξ ⊗ η) = ST⊗L(ξ ⊗ η). The last equality is
satisfied for every finite sum of elements in X ⊗alg Y and then it’s satisfied for all
z ∈ X ⊗ Y. It shows that (ST ⊗ SL)(z) = ST⊗L(z). So ST⊗L = ST ⊗ SL. ◀
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