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Some Inequalities-Equalities Concerning
Continuous Generalized Fusion Frames
in Hilbert Spaces
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Abstract. Continuous generalized fusion frame theory was recently introduced by Rahimi
et al. [14]. Several equalities and inequalities have been obtained for frame, fusion gen-
eralized fusion frame, among others. In the present paper, we continue and extend these
results to obtain some important identities and inequalities in the case of continuous gen-
eralized fusion frame, Parseval continuous generalized fusion frame, λ-tight continuous
generalized fusion frame. Moreover, we obtain some new inequalities for the alternate
dual continuous generalized fusion frame. Finally, we obtain frame operator of a pair of
Bessel continuous generalized fusion mapping and we derive some results about resolution
of identity.
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1. Introduction

Frames are among the most intensively studied and best understood of all
classes of overcomplete bases: one can represent each element in the vector space
via a frame. In last few decades this notion has attracted much attention because
of its practical applications in many areas such as coding and communications,
filter bank theory, and widely used in signal and image processing, among others.

Recently, several generalizations of frames in Hilbert spaces have been pro-
posed. For instance: Fusion frame, g-frame, K-frame, b-frame, for more details
see [1, 12, 14, 15].

More recently, Zaghami Farfar et al. [17] combined two types of frames which
lead to a new concept in the theory of frames ≪ generalized fusion frame ≫.
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One of the most important inequalities and useful identities was found by
Balan et al. [2] as follows:

Theorem 1. [3] Let {fi}i∈I be a Parceval frame for H. Then

∑
i∈J

|⟨f, fi⟩|2 −

∥∥∥∥∥∑
i∈J

⟨f, fi⟩fi

∥∥∥∥∥
2

=
∑
i∈Jc

|⟨f, fi⟩|2 −

∥∥∥∥∥∑
i∈Jc

⟨f, fi⟩fi

∥∥∥∥∥
2

. (1)

This is particulary used in the study of signal processing. Inspired by Theorem
1, Zhu and Wu [18] generalized this inequality to an alternate dual frame.

Theorem 2. [18] Let {fi}i∈I be a frame for H and {gi}i∈I be an alternate dual
frame of {fi}i∈I . Then for any J ∈ I and f ∈ H we have(∑

i∈J
⟨f, gi⟩⟨f, fi⟩

)
−

∥∥∥∥∥∑
i∈J

⟨f, gi⟩fi

∥∥∥∥∥
2

=

(∑
i∈Jc

⟨f, gi⟩⟨f, fi⟩

)
−

∥∥∥∥∥∑
i∈Jc

⟨f, gi⟩fi

∥∥∥∥∥
2

.

Later on, this inequality (1) has motivated a large number of authors such as
Jian-Zhen Li et al. [11] and X.H. Yang et al. [16] for various other inequalities
related to this inequality, we refer the readers to [2, 3, 4, 5, 9, 10, 17].

Motivated by the aforementioned works, we aim to extend and improve iden-
tities and inequalities in the case of continuous generalized fusion frame, Parseval
continuous generalized fusion frame, λ-tight continuous generalized fusion frame
and continuous generalized fusion pairs.

2. Preliminaries

2.1. Background

Throughout this paper, we adopt the following notations: H will be a Hilbert
space, B(H) the algebra of all bounded linear operators on H, IdH the identity
operator on H, and H the collection of all closed subspaces of H. Also, µ is a
positive measure and (X,µ) is a measure space. πV is the orthogonal projection
from H onto a closed subspace V ⊂ H, and ω : X −→ [0,+∞) will be a
measurable mapping such that ω ̸= 0 a.e..

Lemma 1. [13] Let U ∈ H be self-adjoint and T = aU2 + bU + cIdH such that
a, b, c ∈ R. Then the following hold:

i) If a > 0, then

inf
∥f∥=1

⟨Tf, f⟩ ≥ 4ac− b2

4a
.
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ii) If a < 0, then

sup
∥f∥=1

⟨Tf, f⟩ ≤ 4ac− b2

4a
.

Lemma 2. [3] If T1, T2 are operators on H satisfying T1 + T2 = IdH, then
T1 + T2 = T 2

1 + T 2
2 .

Lemma 3. [18] Let T1, T2 be two linear bounded operators on H satisfying T1 +
T2 = IdH. Then T1 + T ∗

1 T1 = T ∗
2 − T ∗

2 T2.

Lemma 4. [8] Let V ⊆ H be a closed subspace and T be a linear bounded operator
on H. Then

πV T
∗ = πV T

∗πTV .

If T is unitary, i.e., T ∗T = TT ∗ = IdH, then

πTV T = TπV .

The following definition is a generalized continuous version of fusion frames
proposed and defined by Faroughi and Ahmadi [7]:

Definition 1. (see [7]) Let F : X → H be such that for each f ∈ H the mapping
x 7−→ πF (x)(f) is measurable (i.e., is weakly measurable) and let {Kx}x∈X be a
collection of Hilbert spaces. For each x ∈ X, suppose that Λx ∈ B(F(x),Kx) and
put

Λ = {Λx ∈ B(F(x),Kx) : x ∈ X}.

Then (Λ,F, ω) is a continuous g-fusion frame for H if there exist 0 < A ≤ B < ∞
such that for all f ∈ H

A∥f∥2 ≤
∫
X1

ω2(x)∥ΛxπF (x)(f)∥2dµ(x) ≤ B∥f∥2,

where πF (x) is the orthogonal projection of H onto the subspace F (x).

Furthermore, (Λ,F, ω) is called a tight continuous g-fusion frame for H if
A = B, and Parseval if A = B = 1, and (Λ,F, ω) is called a Bessel continuous
g-fusion frame for H if the right inequality holds.

Let K = ⊕x∈XKx and L2(X,K) be a collection of all measurable functions
φ : X −→ K such that for each x ∈ X φ(x) ∈ Kx, and∫

X
∥φ(x)∥2dµ(x) < ∞.
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The synthesis operator is defined weakly as follows (for more details refer to [7]):

TF,Λ : L2(X,K) → H,

⟨TF,Λ(φ), f⟩ =
∫
X
ω(x)⟨Λ∗

x(φ(x)), h⟩dµ(x),

where φ ∈ L2(X,K) and h ∈ H. It is obvious that TF,Λ is linear and by [7,
Remark 1.6], TF,Λ is a bounded linear operator. Its adjoint, which is called
analysis operator, is

T ∗
F,Λ : H −→ L2(X,K),

T ∗
F,Λ = ω(.)Λ∗

(.)πF (.).

Assume that

SF,Λ(f) = TF,ΛT
∗
F,Λ(f) =

∫
X1

ω2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x), f ∈ H.

Then SF,Λ is a bounded, positive, self-adjoint and invertible operator and we
have

B−1idH ≤ S−1
F,Λ ≤ A−1idH.

So we have the following reconstruction formula for any f ∈ H,

f =

∫
X
ω2(x)πF (x)Λ

∗
xΛxπF (x)S

−1
F,Λ(f)dµ(x) (2)

=

∫
X
ω2(x)S−1

F,ΛπF (x)Λ
∗
xΛxπF (x)(f)dµ(x).

3. Inequalities-equalities for Parseval continuous generalized
fusion frame

Let (Λ,F, ω) be a continuous g-fusion frame for H with bounds A and B. De-

note its canonical dual continuous g-fusion frame by Λ̃ :=
(
S−1
F,ΛF (x),ΛxπF (x)S

−1
F,Λ, ω

)
.

Hence for each f ∈ H the reconstruction formula (2) may be written in the form

f =

∫
X
ω2(x)πF (x)Λ

∗
xΛ̃xπF̃ (x)(f)dµ(x) =

∫
X
ω2(x)πF̃ (x)Λ̃

∗
xΛxπF (x)(f)dµ(x),

where F̃ (x) := S−1
F,ΛF (x), Λ̃x := ΛxπF (x)S

−1
F,Λ. Thus we obtain

⟨S−1
F,Λf, f⟩ =

∫
X1

ω2(x)∥Λ̃xπF̃ (x)(f)∥
2dµ(x). (3)
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For any X1 ⊂ X, we denote Xc
1 = X \X1, and we define the following operators:

SX1
F,Λf =

∫
X1

ω2(x)πF(x)Λ
∗
xΛ̃xπF̃ (x)(f)dµ(x), f ∈ H,

MX1
F,Λf =

∫
X1

ω2(x)πF(x)Λ
∗
xΛxπF (x)(f)dµ(x), f ∈ H.

Obviously, SF,Λ = MX1
F,Λ + MXc

1
F,Λ, and MX1

F,Λ, M
Xc

1
F,Λ are self-adjoint operators.

It is easy to check that SX1
F,Λ is a bounded, linear and positive operator. Again,

we have

SX1
F,Λ + S

Xc
1

F,Λ = IdH.

Theorem 3. Let f ∈ H. Then∫
X1

ω2(x)⟨Λ̃xπF̃ (x)(f),ΛxπF (x)(f)⟩dµ(x)− ∥SX1
F,Λf∥

2

=

∫
Xc

1

ω2(x)⟨Λ̃xπF̃ (x)(f),ΛxπF (x)(f)⟩dµ(x)− ∥SXc
1

F,Λf∥
2.

Proof. For any f ∈ H, we have∫
X1

ω2(x)⟨Λ̃xπF̃ (x)(f),ΛxπF (x)(f)⟩dµ(x)− ∥SX1
F,Λf∥

2

= ⟨SX1
F,Λf, f⟩ − ∥SX1

F,Λf∥
2

= ⟨SX1
F,Λf, f⟩ − ⟨(SX1

F,Λ)
∗SX1

F,Λf, f⟩

= ⟨(IdH − SX1
F,Λ)

∗SX1
F,Λf, f⟩ = ⟨(SXc

1
F,Λ)

∗(IdH − S
Xc

1
F,Λ)f, f⟩

= ⟨(SXc
1

F,Λ)
∗f, f⟩ − ⟨(SXc

1
F,Λ)

∗S
Xc

1
F,Λf, f⟩.

This completes the proof. ◀

Furthermore, if we suppose that (Λ,F, ω) is a Parseval continuous generalized
fusion frame, then we can easily obtain the same equality presented in [13] as
follows:

Theorem 4. Assume that (Λ,F, ω) is a Parseval continuous generalized fusion
frame for H. Then for X1 ⊂ X and f ∈ H, the following holds:∫

X1

ω2(x)∥ΛxπF (x)(f)∥2dµ(x)− ∥
∫
X1

ω2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2
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=

∫
Xc

1

ω2(x)∥ΛxπF (x)(f)∥2dµ(x)− ∥
∫
Xc

1

ω2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2.

Moreover,∫
Xc

1

ω2(x)∥ΛxπF (x)(f)∥2dµ(x)− ∥
∫
Xc

1

ω2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2 ≥

3

4
∥f∥2.

Proof. Since (Λ,F, ω) is a Parseval continuous generalized fusion frame for

H, and by using the fact that SX1
F,Λ and S

Xc
1

F,Λ are commuting, for each f ∈ H, we
have ∫

X1

ω2(x)∥ΛπF (x)(f)∥2dµ(x)− ∥
∫
X1

ω2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2

= ⟨(SXc
1

F,Λ + (S
Xc

1
F,Λ)

2)f, f⟩

= ⟨(IdH − SX
F,Λ + (S

Xc
1

F,Λ)
2)f, f⟩.

By lemma 1 for a = 1, b = −1 and c = 1, the result follows. ◀

Corollary 1. Let (Λ,F, ω) be a Parseval continuous generalized fusion frame for
H. Then we have

1

2
∥f∥2 ≤ ∥

∫
X1

ω2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2dµ(x)∥2

− ∥
∫
Xc

1

ω2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2 ≤

3

2
∥f∥2,

3

4
∥f∥2 ≤

∫
X1

ω2(x)∥ΛπF (x)(f)∥2dµ(x)

− ∥
∫
Xc

1

ω2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2 ≤ ∥f∥2.

Proof. Observe that

(SX1
F,Λ)

2 + (S
Xc

1
F,Λ)

2 = (SX1
F,Λ)

2 + (S
Xc

1
F,Λ)

2

= 2(SX1
F,Λ)

2 − 2SX1
F,Λ + IdH.

Applying Lemma 1, we get

(SX1
F,Λ)

2 + (S
Xc

1
F,Λ)

2 ≥ 1

2
IdH.
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Since SX1
F,Λ − (SX1

F,Λ)
2 ≥ 0 and

(SX1
F,Λ)

2 + (S
Xc

1
F,Λ)

2 = 2(SX1
F,Λ)

2 − 2SX1
F,Λ + IdH

= IdH + 2SX1
F,Λ − 2(SX1

F,Λ)
2 + 4((SX1

F,Λ)
2 − SX1

F,Λ),

we have

(SX1
F,Λ)

2 + (S
Xc

1
F,Λ)

2 ≤ IdH + 2SX1
F,Λ − 2(SX1

F,Λ)
2.

Applying again Lemma 1, we get

(SX1
F,Λ)

2 + (S
Xc

1
F,Λ)

2 ≤ 3

2
IdH.

Thus

1

2
IdH ≤ (SX1

F,Λ)
2 + (S

Xc
1

F,Λ)
2 ≤ 3

2
IdH.

Next, observe that

SX1
F,Λ − (S

Xc
1

F,Λ)
2 = SX1

F,Λ − (IdH − SX1
F,Λ)

2

= (SX1
F,Λ)

2 − SX1
F,Λ + IdH.

Since SX1
F,Λ − (SX1

F,Λ)
2 ≥ 0 implies

3

2
IdH ≤ SX1

F,Λ + (SX1
F,Λ)

2 ≤ IdH,

by Lemma 1, for each f ∈ H, we get

⟨(SX1
F,Λ − (SX1

F,Λ)
2)f, f⟩ = ⟨SX1

F,Λf, f⟩ − ⟨(SX1
F,Λ)

2f, f⟩

=

∫
X1

ω2(x)∥ΛπF (x)(f)∥2dµ(x)− ∥
∫
Xc

1

ω2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2.

The proof is completed. ◀

Corollary 2. Let (Λ,F, ω) be a Parseval continuous generalized fusion frame for
H. Then

0 ≤ SX1
F,Λ − (SX1

F,Λ)
2 ≤ 1

4
IdH.
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Proof. Since SX1
F,ΛS

Xc
1

F,Λ = S
Xc

1
F,ΛS

X1
F,Λ and SX1

F,Λ, S
Xc

1
F,Λ are positive, self-adjoint

operators, it follows that SX1
F,ΛS

Xc
1

F,Λ is also positive and self-adjoint. Hence, we
have

0 ≤ SX1
F,ΛS

Xc
1

F,Λ = SX1
F,Λ − (S

Xc
1

F,Λ)
2.

Applying Lemma 1, we obtain

SX1
F,Λ − (SX1

F,Λ)
2 ≤ 1

4
IdH.

This completes the proof. ◀

Since SF,Λ (resp. S−1
F,Λ) is a positive operator in B(H), there exists a unique

positive square root S
1
2
F,Λ (resp. S

− 1
2

F,Λ) which commutes with every operator which

commutes with SF,Λ (resp. S−1
F,Λ). Therefore, for each f ∈ H we have

f = S
− 1

2
F,ΛSF,ΛS

− 1
2

F,Λf =

∫
X1

ω2(x)S
− 1

2
F,ΛπF (x)Λ

∗
xΛxπF (x)S

− 1
2

F,Λfdµ(x)

and thus, by Lemma 4, we have

∥f∥2 = ⟨
∫
X1

ω2(x)S
− 1

2
F,ΛπF (x)Λ

∗
xΛxπF (x)S

− 1
2

F,Λfdµ(x), f⟩

=

∫
X1

ω2(x)

∥∥∥∥ΛxπF (x)S
− 1

2
F,Λf

∥∥∥∥2 dµ(x)
=

∫
X1

ω2(x)

∥∥∥∥∥ΛxπF (x)S
− 1

2
F,Λπ

S
− 1

2
F,ΛF (x)

f

∥∥∥∥∥
2

dµ(x).

This means that (S
− 1

2
F,ΛF (x),ΛxπF (x)S

− 1
2

F,Λ, ω) is a Parseval continuous generalized
fusion frame. Hence we have the following theorem:

Theorem 5. Let (Λ,F, ω) be a Parseval continuous generalized fusion frame for
H. Then∫

X1

ω2(x)∥ΛxπF (x)(f)∥2dµ(x)− ∥S− 1
2

F,ΛS
X1
F,Λf∥

2

=

∫
Xc

1

ω2(x)∥ΛxπF (x)(f)∥2dµ(x)− ∥S− 1
2

F,ΛS
Xc

1
F,Λf∥

2.

Proof. Assume that χx := ΛxπF (x)S
− 1

2
F,Λ and V (x) := S

1
2
F,ΛF (x). Then by the

previous result that (S
− 1

2
F,ΛF (x),ΛxπF (x)S

− 1
2

F,Λ, ω) is a Parseval continuous general-
ized fusion frame, and Corollary 4, we get
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X1

ω2(x)
∥∥χxπV (x)f

∥∥2 dµ(x) + ∥∥∥∥∫
X1

ω2(x)πV (x)χ
∗
xχxπV (x)fdµ(x)

∥∥∥∥2∫
Xc

1

ω2(x)
∥∥χxπV (x)f

∥∥2 dµ(x) + ∥∥∥∥∥
∫
Xc

1

ω2(x)πV (x)χ
∗
xχxπV (x)fdµ(x)

∥∥∥∥∥
2

.

Moreover, we have∫
X1

ω2(x)πV (x)χ
∗
xχxπV (x)fdµ(x)

=

∫
X1

ω2(x)
(
χxπV (x)

)∗
χxπV (x)fdµ(x)

=

∫
X1

ω2(x)

(
ΛxπF (x)S

− 1
2

F,ΛπV (x)

)∗
ΛxπF (x)S

− 1
2

Λ πV (x)fdµ(x)

=

∫
X1

ω2(x)S
− 1

2
F,ΛπV (x)Λ

∗
xΛxπV (x)S

− 1
2

F,Λfdµ(x)

= S
− 1

2
F,ΛSF,ΛS

− 1
2

F,Λf.

Now, replacing f by S
1
2
F,Λf , we complete the proof. ◀

Corollary 3. Let (Λ,F, ω) be a Parseval continuous generalized fusion frame for
H. Then

0 ≤ SX1
F,Λ − SX1

F,ΛS
−1
F,ΛS

X1
F,Λ ≤ 1

4
SF,Λ.

Proof. In the proof of Theorem 5, we have∫
X1

ω2(x)πV (x)χ
∗
xχxπV (x)fdµ(x) = S

− 1
2

F,ΛSF,ΛS
− 1

2
F,Λf.

By Corollary 1, we get

0 ≤
∫
X1

ω2(x)πV (x)χ
∗
xχxπV (x)fdµ(x)−

(∫
X1

ω2(x)πV (x)χ
∗
xχxπV (x)fdµ(x)

)2

≤ 1

4
IdH.

Therefore, we have

0 ≤ S
− 1

2
F,Λ

(
SX1
F,Λ − SX1

F,ΛS
−1
F,ΛS

X1
F,Λ

)
S
− 1

2
F,Λ ≤ 1

4
IdH.

This completes the proof. ◀
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Corollary 4. Suppose that (Λ,F, ω) is a continuous generalized fusion frame for
H with continuous g-fusion frame operator SF,Λ. If X1 ⊆ X and f ∈ H, then we
have ∫

X1

ω2(x)∥ΛxπF (x)(f)∥2dµ(x)− ∥S− 1
2

F,ΛS
Xc

1
F,Λf∥

2 ≥ 3

4

∥∥∥S−1
F,Λ

∥∥∥−1
∥f∥2.

Proof. By Theorems 5 and 4, we can write∫
X1

ω2(x)
∥∥ΛxπF (x)(f)

∥∥2 dµ(x) + ∥∥∥∥S− 1
2

F,ΛS
Xc

1
F,Λf

∥∥∥∥
=

∫
X1

ω2(x)

∥∥∥∥χxπV (x)S
− 1

2
F,Λf

∥∥∥∥2 dµ(x) +
∥∥∥∥∥
∫
Xc

1

ω2(x)πV (x)χ
∗
xχxfπV (x)S

1
2
F,Λfdµ(x)

∥∥∥∥∥
2

≥ 3

4

∥∥∥∥S 1
2
F,Λf

∥∥∥∥2 = 3

4
⟨SF,Λf, f⟩

≥ 3

4

∥∥∥S−1
F,Λ

∥∥∥−1
∥f∥2.

This completes the proof. ◀

Theorem 6. Let (Λ,F, ω) be a continuous generalized fusion frame for H. Then
for X1 ⊂ X and for each f ∈ H, we have∫

X1

ω2(x)∥ΛxπF (x)(f)∥2dµ(x)−
∫
X1

ω2(x)∥Λ̃xπF̃ (x)M
X1
F,Λ(f)∥

2dµ(x)

=

∫
Xc

1

ω2(x)∥ΛxπF (x)(f)∥2dµ(x)−
∫
Xc

1

ω2(x)∥Λ̃xπF̃ (x)M
Xc

1
F,Λf∥

2dµ(x),

where

MX1
F,Λf =

∫
X1

ω2(x)πF (x)Λ
∗
xΛxπF (x)fdµ(x).

Proof. Assume that SF,Λ is a continuous generalized fusion frame for (Λ,F, ω).

By the definition of SF,Λ, it is clear that MX1
F,Λ +MXc

1
F,Λ = SF,Λ. It follows that

S−1
F,ΛM

X1
F,Λ + S−1

F,ΛM
Xc

1
F,Λ = IdH. Hence, by applying Lemma 2 to the operators

S−1
F,ΛM

X1
F,Λ and S−1

F,ΛM
Xc

1
F,Λ, we get

S−1
F,ΛM

X1
F,Λ − S−1

F,ΛM
X1
F,Λ =

(
S−1
F,ΛM

X1
F,Λ

)2
−
(
S−1
F,ΛM

Xc
1

F,Λ

)2
.
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Thus, for each f, g ∈ H, we obtain〈
S−1
F,ΛM

X1
F,Λf, g

〉
−
〈
S−1
F,ΛM

X1
F,ΛS

−1
F,ΛM

X1
F,Λf, g

〉
=
〈
S−1
F,ΛM

Xc
1

F,Λf, g
〉
−
〈
S−1
F,ΛM

Xc
1

F,ΛS
−1
F,ΛM

Xc
1

F,Λf, g
〉
.

Letting g = SF,Λf , we get〈
MXc

1
F,Λf, f

〉
−
〈
S−1
F,ΛM

X1
F,Λf,MF,Λf

〉
=
〈
MXc

1
F,Λf, f

〉
−
〈
S−1
F,ΛM

Xc
1

F,Λf,M
Xc

1
F,Λf

〉
.

Finally, by (3), we complete the proof. ◀

Notice that ( 1√
λ
Λ,F, ω) is a Parseval continuous generalized fusion frame if

(Λ,F, ω) is a λ-tight continuous generalized fusion frame for H.

Corollary 5. Let (Λ,F, ω) be a λ-tight continuous generalized fusion frame for
H. Then for X1 ⊂ X and f ∈ H, the following hold:

0 ≤ λ

∫
X1

ω2(x)∥ΛπF (x)f∥2dµ(x)− ∥
∫
X1

ω2(x)πF (x)Λ
∗
xΛxπF (x)fdµ(x)∥2 ≤

λ2

4
∥f∥2,

λ2

2
∥f∥2 ≤ ∥

∫
X1

ω2(x)πF (x)Λ
∗
xΛxπF (x)fdµ(x)∥2dµ(x)∥2

− ∥
∫
Xc

1

ω2(x)πF (x)Λ
∗
xΛxπF (x)fdµ(x)∥2 ≤

3λ2

2
∥f∥2,

3λ2

2
∥f∥2 ≤ λ

∫
X1

ω2(x)∥ΛxπF (x)f∥2dµ(x)− ∥
∫
Xc

1

ω2(x)πF (x)Λ
∗
xΛxπF (x)fdµ(x)∥2

≤ λ2∥f∥2.

Next we discuss equality for tight continuous generalized fusion frames. First,
we define two operators S1

F,Λ, S
2
F,Λ as follows:

S1
F,Λ : H −→ H, S1

F,Λf =

∫
X
axω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x), f ∈ H,

S2
F,Λ : H −→ H, S2

F,Λf =

∫
X
(1− ax)ω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x), f ∈ H,

where (Λ,F, ω) is a Bessel continuous generalized fusion frame for H and {ax :
x ∈ X} ∈ l∞(X) such that l∞(X) = {{ax : x ∈ X} : supx∈X |ax| < ∞}.
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Proposition 1. Let (Λ,F, ω) be a continuous g-fusion frame for H with bound
B. Then S1

F,Λ and S2
F,Λ are bounded linear operators and

(S1
F,Λ)

∗f =

∫
X
axω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x), f ∈ H,

(S2
F,Λ)

∗f =

∫
X
(1− ax)ω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x), f ∈ H.

Proof. For f ∈ H and X1 ⊂ X, we have∥∥∥∥∫
X
axω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)

∥∥∥∥
= sup

g∈H,∥g∥=1

∣∣∣∣〈∫
X
axω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x), g

〉∣∣∣∣
= sup

g∈H,∥g∥=1

∣∣∣∣∫
X1

ω2(x)
〈
ΛxπF (x)f, āxΛxπF (x)g

〉
dµ(x)

∣∣∣∣
≤ sup

g∈H,∥g∥=1

(∫
X1

ω2(x)
∥∥ΛxπF (x)(f)

∥∥2 dµ(x)) 1
2
(∫

X1

v2(x)
∥∥āxΛxπF (x)(g)

∥∥2 dµ(x)) 1
2

≤ BMa∥f∥,

where Ma = supx∈X |ax| and āx is the conjugate of ax. This implies that S1
F,Λ

is well-defined and
∥∥∥S1

F,Λf
∥∥∥ ≤ BMa∥f∥. Therefore, S1

F,Λ is a bounded linear

operator. Now let us compute its adjoint〈
f,
(
S1
F,Λ

)∗
(g)
〉
=
〈
S1
F,Λf, g

〉
=

〈∫
X
axω

2(x)ΛxπF (x)fdµ(x), g

〉
=

〈
f,

∫
X
axω

2(x)πF (x)Λ
∗
xΛxπF (x)(g)dµ(x)

〉
dµ(x).

Similarly, we can show that S2
F,Λ is a bounded linear operator and its adjoint is

(S2
F,Λ)

∗f =

∫
X
(1− ax)ω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x), f ∈ H.

This completes the proof. ◀

Theorem 7. Let (Λ,F, ω) be a λ-tight continuous generalized fusion frame for
H. Then for f ∈ H and {ax : x ∈ X} ∈ l∞(X), we have

λ

∫
X
axω

2(x)∥ΛπF (x)(f)∥2dµ(x)− ∥
∫
X
(1− ax)ω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2
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= λ

∫
X
(1− ax)ω

2(x)∥ΛπF (x)(f)∥2dµ(x)− ∥
∫
X
axω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2,

where ax is the conjugate of ax.

Proof. Since (Λ,F, ω) is a λ-tight continuous generalized fusion frame for H,
by Proposition 1, S1

F,Λ and S2
F,Λ are well defined. In particular, for each f ∈ H,

we have

S1
F,Λf + S2

F,Λf =

∫
X
ω2(x)πF (x)Λ

∗
xΛxπF (x)(f)dµ(x).

So λ−1S1
F + λ−1S2

F,Λ = IdH. Now if we suppose that Q1 = λ−1S1
F,Λ and Q2 =

λ−1S2
F , then we have

Q1 +Q∗
2Q2 = Q1 + (IH −Q1)

∗ (IH −Q1)

= Q1 + (IH −Q∗
1) (IH −Q1)

= Q1 + IH −Q1 −Q∗
1 +Q∗

1Q1

= IH −Q∗
1 +Q∗

1Q1

= Q∗
2 +Q∗

1Q1

and thus

λS1
F,Λ +

(
S2
F,Λ

)∗
S2
F,Λ = λS2

F,Λ +
(
S1
F,Λ

)∗
S1
F,Λ.

Hence for h ∈ H, we get

λ

∫
X
axv

2(x)
∥∥πF (x)(h)

∥∥2 dµ(x) + ∥∥∥∥∫
X
(1− ax) v

2(x)πF (x)(h)dµ(x)

∥∥∥∥2
=
〈
λS1

F,Λh, h
〉
+
〈(

S2
F,Λ

)∗
S2
F,Λh, h

〉
=
〈(

λS1
F,Λ +

(
S2
F,Λ

)∗
S2
F,Λ

)
h, h

〉
=
〈(

λS2
F,Λ +

(
S1
F,Λ

)∗
S1
F,Λ

)
h, h

〉
=
〈
λ
(
S2
F,Λ

)∗
h, h

〉
+
〈(

S1
F,Λ

)∗
S1
F,Λh, h

〉
=
〈
h, S2

F,Λh
〉
+
∥∥S1

F,Λh
∥∥2 .

This completes the proof. ◀

Furthermore, by Theorems 4 and 5, we immediately obtain the following
result.
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Corollary 6. Let (Λ,F, ω) be a λ-tight continuous generalized fusion frame for
H. Then for f ∈ H and {ax : x ∈ X} ∈ l∞(X), we have

λ

∫
X
axω

2(x)∥ΛπF (x)(f)∥2dµ(x)− ∥
∫
X
(1− ax)ω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2

= λ

∫
X
(1− ax)ω

2(x)∥ΛπF (x)(f)∥2dµ(x)

−∥
∫
X
axω

2(x)πF (x)Λ
∗
xΛxπF (x)(f)dµ(x)∥2 ≥

3

4
∥f∥2.

4. Inequalities-equalities for continuous generalized fusion pairs

By Lemma 1, we have

πF (x)S
−1
F,Λ = πF (x)S

−1
F,ΛπS−1

F,ΛF (x),

which implies that

S−1
F,ΛπF (x) = πS−1

F,ΛF (x)S
−1
F,ΛπF (x).

Moreover, (2) also can be rewritten as

f =

∫
X
ω2(x)πS−1

F,ΛF (x)(S
−1
F,ΛπF (x)Λ

∗
xSF,Λ)S

−1
F,ΛΛxπF (x)fdµ(x), f ∈ H.

Now, we introduce the following definition.

Definition 2. Let V = (Λ,F, ω) be a continuous generalized fusion frame with
bounds A, B and SF,Λ be a frame operator. We consider also W = (Γ,G, ν) as
a Bessel continuous generalized fusion mapping. We say that W is an alternate
dual of V if we have

f =

∫
X
ω(x)ν(x)πG(x)Γ

∗
xS

−1
F,ΛΛxπF (x)fdµ(x), f ∈ H. (4)

Proposition 2. The alternate dual of continuous generalized fusion frame of V
is a continuous generalized fusion frame.

Proof. By (4), for each f ∈ H, we get

∥f∥2 =
∫
X
ω(x)ν(x)⟨πG(x)Γ

∗
xS

−1
F,ΛΛxπF (x)f, f⟩dµ(x)

≤
∫
X
ω(x)ν(x)⟨S−1

F,ΛΛxπF (x)f,ΓxπG(x)f⟩dµ(x)
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=

∫
X
ω(x)ν(x)∥S−1

F,ΛΛxπF (x)f∥∥ΓxπG(x)f∥dµ(x)

≤
(∫

X
ω(x)2∥S−1

F,ΛΛxπF (x)f∥2dµ(x)
)1/2(∫

X
ν(x)2∥ΓxπG(x)f∥2dµ(x)

)1/2

≤ ∥S−1
F,Λ∥

√
B

(∫
X
ν(x)2∥ΓxπG(x)f∥2

)1/2

,

where B is the upper bound of V. ◀

Theorem 8. Assume that (Λ,F, ω) is a continuous g-fusion frame for H with
the continuous g-fusion frame operator SF,Λ, W = (Γ,G, ν) is an alternate dual
continuous g-fusion frame of V = (Λ,F, ω). Then for any X1 ⊂ X and for each
f ∈ H, ∫

X1

ω(x)ν(x)⟨S−1
F,ΛΛxπF (x)f,ΓxπG(x)f⟩dµ(x)

−
∥∥∥∥∫

X1

ω(x)ν(x)πG(x)Γ
∗
xS

−1
F,ΛΛxπF (x)fdµ(x)

∥∥∥∥2
=

∫
Xc

1

ω(x)ν(x)⟨S−1
F,ΛΛxπF (x)f,ΓxπG(x)f⟩dµ(x)

−

∥∥∥∥∥
∫
Xc

1

ω(x)ν(x)πG(x)Γ
∗
xS

−1
F,ΛΛxπF (x)fdµ(x)

∥∥∥∥∥
2

.

Proof. For each X1 ⊂ X, let us consider a bounded linear operator TFG,ΛΓ as
follows:

T X1
FG,ΛΓf =

∫
X1

ω(x)ν(x)πG(x)Γ
∗
xS

−1
F,ΛΛxπF (x)fdµ(x), f ∈ H.

It is clear that T X1
FG,ΛΓ + T Xc

1
FG,ΛΓ = IdH. Applying Lemma 3, we have∫

X1

ω(x)ν(x)⟨S−1
F,ΛΛxπF (x)f,ΓxπG(x)f⟩dµ(x)

−
∥∥∥∥∫

X1

ω(x)ν(x)πG(x)Γ
∗
xS

−1
F,ΛΛxπF (x)fdµ(x)

∥∥∥∥2
=

∫
X1

ω(x)ν(x)⟨S−1
F,ΛΛxπF (x)f,ΓxπG(x)f⟩dµ(x)− ⟨T X1

FG,ΛΓf, T
X1
FG,ΛΓf⟩

= ⟨T X1
FG,ΛΓf, f⟩+ ⟨(T X1

FG,ΛΓ)
∗T X1

FG,ΛΓf, f⟩
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= ⟨(T Xc
1

FG,ΛΓ)
∗f, f⟩+ ⟨T Xc

1
FG,ΛΓf, T

Xc
1

FG,ΛΓf⟩

= ⟨f,
∫
Xc

1

ω(x)ν(x)πG(x)Γ
∗
xS

−1
F,ΛΛxπF (x)fdµ(x)⟩

−
∥∥∥∥∫

X1

ω(x)ν(x)πG(x)Γ
∗
xS

−1
F,ΛΛxπF (x)fdµ(x)

∥∥∥∥2
=

∫
Xc

1

ω(x)ν(x)⟨ΓxπG(x)f, S
−1
F,ΛΛxπF (x)f⟩dµ(x)

−

∥∥∥∥∥
∫
Xc

1

ω(x)ν(x)πG(x)Γ
∗
xS

−1
F,ΛΛxπF (x)fdµ(x)

∥∥∥∥∥
2

.

This completes the proof. ◀

In the case of Parseval fusion frame, the previous equality can have a special
form as follows:

Corollary 7. Let (Λ,F, ω) be a Parseval continuous g-fusion frame for H with
the continuous g-fusion frame operator SF,Λ = idH, and (Γ,G, ν) be an alternate
dual continuous g-fusion frame of (Λ,F, ω). Then for any X1 ⊂ X and for each
f ∈ H,∫

X1

ω(x)ν(x)⟨ΛxπF (x),ΓxπG(x)(f)⟩dµ(x)−∥
∫
X1

ω(x)ν(x)πG(x)Γ
∗
xΛxπF (x)fdµ(x)∥2

=

∫
Xc

1

ω(x)ν(x)⟨ΛxπF (x),ΓxπG(x)(f)⟩dµ(x)−

∥∥∥∥∥
∫
Xc

1

ω(x)ν(x)πG(x)Γ
∗
xΛxπF (x)fdµ(x)

∥∥∥∥∥
2

.

5. Frame operator of a pair of Bessel continuous generalized
fusion mappings

Now, let us consider two Bessel continuous generalized fusion mappings: V =
(Λ,F, ω) with Bessel bound B1 and W = (Γ,G, ν) with Bessel bound B2. We
define the operator

SFG,ΛΓ(f) =

∫
X
ω(x)ν(x)πF (x)Λ

∗
xΓxπG(x)(f)dµ(x), f ∈ H.

For all f, g ∈ H, we have

⟨SFG,ΛΓf, g⟩ =
∫
X
ω(x)ν(x)⟨ΓxπG(x)f,ΛxπF (x)g⟩dµ(x).
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Furthermore, by using Cauchy-Schwartz inequality, we have

|⟨SFG,ΛΓf, g⟩| (5)

≤
(∫

X
ω2(x)∥ΓxπG(x)f∥2dµ(x)

)1/2(∫
X
ν2(x)∥ΛxπF (x)g∥2dµ(x)

)1/2

.

From (5), it follows that

|⟨SFG,ΛΓf, g⟩| ≤
√

B1

√
B2∥g∥∥f∥.

Hence, SFG,ΛΓ is a bounded operator and we have

∥SFG,ΛΓ∥ ≤
√
B1

√
B2.

From (5), we obtain

∥SFG,ΛΓf∥ ≤
√

B1

(∫
X
ν2(x)∥ΛxπF (x)g∥2dµ(x)

)1/2

(6)

and

∥(SFG,ΛΓ)
∗f∥ ≤

√
B2

(∫
X
ω2(x)∥ΓxπG(x)f∥2dµ(x)

)1/2

.

Moreover, from the adjointability of the operator SFG,ΛΓ, we get

⟨SFG,ΛΓf, g⟩ =
∫
X
ω(x)ν(x)⟨f, πF (x)Γ

∗
xΛxπG(x)g⟩dµ(x).

Hence, S∗
FG,ΛΓ = SGF,ΓΛ.

Theorem 9. The following assertions are equivalent:

(i) SFG,ΛΓ is bounded below;

(ii) There exists K ∈ B(H) such that {Tx}x∈X is a resolution of identity, where

Tx = ω(x)ν(x)KπF (x)Λ
∗
xΓxπG(x), x ∈ X.

If one of the above conditions is satisfied, then W is a continuous generalized
fusion frame.
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Proof. (i) ⇒ (ii) It is obvious.
(ii) ⇒ (i) If (ii) holds, then for f, g ∈ H, we have

⟨KSFG,ΛΓf, g⟩ = ⟨SFG,ΛΓf,K
∗g⟩ =

∫
X
ω(x)ν(x)

〈
f,
(
KπF (x)Λ

∗
xΓxπG(x)

)∗
g
〉
dµ(x)

= ⟨f, g⟩,

which implies that IH = KSFG,ΛΓ. Thus SFG,ΛΓ is bounded below.
Now, if SFG,ΛΓ is bounded below, from (6) it follows that G is a continuous

fusion frame. So

f = ω(x)ν(x)KπF (x)Λ
∗
xΓxπG(x)fdµ(x), x ∈ X.

Hence

f = K

(∫
X
ω(x)ν(x)πF (x)Λ

∗
xΓxπG(x)fdµ(x)

)
, x ∈ X.

This completes the proof. ◀

Corollary 8. The following assertions are equivalent:

i) SFG,ΛΓ is an invertible operator;

ii) There exists K ∈ B(H) invertible such that {Tx}x∈X is a resolution of
identity, where

Tx = ω(x)ν(x)KπF (x)Λ
∗
xΓxπG(x), x ∈ X

is a resolution of identity.

If one of the above conditions is satisfied, then V and W are continuous general-
ized fusion frames.

Theorem 10. Assume that there exist λ1 < 1 and λ2 > −1 such that∥∥∥∥f −
∫
X
ω(x)ν(x)πF (x)Λ

∗
xΓxπG(x)(f)dµ(x)

∥∥∥∥
≤ λ1∥f∥+ λ2

∥∥∥∥∫
X
ω(x)ν(x)πF (x)Λ

∗
xΓxπG(x)(f)dµ(x)

∥∥∥∥ ,
for all f ∈ H. Then W is a continuous generalized fusion frame and(

1− λ1

1 + λ2

)2 1

B1
∥f∥2 ≤

∫
X
ω2(x)∥ΓxπG(x)f∥2dµ(x), f ∈ H.
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Proof. Since SFG,ΛΓf =
∫
X ω(x)ν(x)πF (x)Λ

∗
xΓxπG(x)(f)dµ(x), we have

∥f − SFG,ΛΓf∥ ≤ λ1∥f∥+ λ2∥SFG,ΛΓf∥.

Since

∥f − SFG,ΛΓf∥ ≥| |∥f∥ − ∥SFG,ΛΓf∥ |,

λ1∥f∥+ λ2∥SFG,ΛΓf∥ ≥ |∥f∥ − ∥SFG,ΛΓf∥

and thus

∥SFG,ΛΓf∥ ≥ 1− λ1

1 + λ2
∥f∥.

Hence we obtain∫
X
ω2(x)∥ΓxπG(x)f∥2dµ(x) ≥

(
1− λ1

1 + λ2

)2 1

B1
∥f∥2.

This completes the proof. ◀

In particular, if we take λ2 = 0, then in this case we have obviously a stronger
result.

Corollary 9. Assume that there exists λ ∈ [0, 1) such that∥∥∥∥f −
∫
X
ω(x)ν(x)πF (x)Λ

∗
xΓxπG(x)(f)dµ(x)

∥∥∥∥ ≤ λ∥f∥, f ∈ H. (7)

Then V and W are continuous generalized fusion frames and the following esti-
mates hold: ∫

X
ν(x)2(x)∥ΓxπG(x)f∥2dµ(x) ≥ (1− λ)2

B1
∥f∥2,∫

X
ω2(x)∥ΛxπF (x)f∥2dµ(x) ≥ (1− λ)2

B2
∥f∥2

for all f ∈ H.

Proof. Under the assumption (7), for each f ∈ H, we have

∥f − SFG,ΛΓf∥ = ∥(IH − SFG,ΛΓ)
∗f∥ ≤ ∥(IH − SFG,ΛΓ)

∗∥ ∥f∥
≤ λ ∥f∥ .

Hence applying Theorem 10, we get the result. ◀
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6. Conclusion

In this paper, we have established some equalities and inequalities for con-
tinuous generalized fusion frame, Parseval continuous generalized fusion frame,
alternate dual continuous generalized fusion frame, which generalize some re-
markable and existing results which have been obtained before.
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