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Some Remarks on Integral Operators in Banach
Function Spaces and Representation Theorems in
Banach-Sobolev Spaces
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Abstract. In this paper, we consider convolution operators, integral operators with
weak singularity, Riesz potentials, in particular, those with kernels Ki (x, y) = xi−yi

|x−y|n

acting in special classes of Banach function spacesX (Ω) and their subspacesXs (Ω)), and
we prove some representation theorems for the functions from Banach-Sobolev spaces.
We also prove the boundedness of Riesz potential in additive-invariant spaces.
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1. Introduction

In recent years there has been increasing interest towards non-standard func-
tion spaces. The emergence of new function spaces such as Morrey space, grand-
Lebesgue space, etc. naturally requires the development of corresponding theory.
That’s why various problems in such spaces and corresponding Sobolev spaces
generated by these spaces began to be intensively studied (see [1, 2, 3, 6, 7, 8,
9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]). In general, the Ba-
nach function spaces are not separable. Therefore, using classical methods for
establishing classical facts in these spaces requires the essential modification of
classical methods and a lot of preparation, concerning correctness of substitu-
tion operator, problems related to the extension operator in such spaces, etc.
To this aim, based on the additive shift operator (Tδf) (x) = f (x+ δ), corre-
sponding separable subspaces Xs (Ω) of these spaces have been introduced, in
which the set of compactly supported infinitely differentiable functions is dense
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([3, 6, 7, 9, 11, 12, 13, 14, 15, 16]). Corresponding subspaces of grand Lebesgue,
Marcinkiewich, weak type Lw

p , Morrey spaces are described, for example, in
([8, 9]). In rearrangement-invariant case these subspaces coincide with the set of
absolutely continuous functions, that makes it easier to describe such subspaces.

In the classical case, Riesz potential and Sobolev integral identity (see [4, 5,
22]) play an exceptional role in establishing many properties of functions from
Sobolev class W k

p (Ω) and proving embedding theorems. In [3], under some con-
ditions it is proved that the corresponding embedding operators act compactly
from grand-Lebesgue space to C

(
Ω
)
or to classical Lebesgue spaces defined on

manifolds. In [6], some generalizations for the convolution operator acting in
rearrangement-invariant Banach function space are established.

In this paper we study convolution operators, integral operators with weak
singularity, Riesz potential, in particular, those with kernels Ki (x, y) = xi−yi

|x−y|n

acting in special classes of Banach function spaces and their subspacesXs (Ω), and
representation theorems for functions from Banach-Sobolev spaces. In particular,
boundedness of Riesz potential in additive-invariant spaces is proved.

2. Needful information

In this section, we give notations, concepts and results to be used in the
sequel. We will use the following standard notations: Z+ will denote the set of
non-negative integers, |x| =

√
x21 + ....+ x2n will be the norm of x = (x1, ..., xn),

m = mes (M) = |M | will stand for the Lebesgue measure of the set M ⊂ Rn, ∂Ω
will denote the boundary of the domain Ω, Ω = Ω

⋃
∂Ω will be the closure of Ω.

Br (x0) = {x : |x− x0| < r} , Br = Br (0) ,Ω− δ = {x : x+ δ ∈ Ω} (∀δ ∈ Rn) ,

Ωε = {x : dist (x, Ω) < ε} , (∀ε > 0) .

By [X,Y ] ([X] if X = Y ) we will denote the space of bounded operators acting
from Banach function space X to Y , ∥T∥[X,Y ] will be the norm of the operator T
in [X.Y ]. α = (α1, α2, ..., αn) will stand for the multiindex with the coordinates
αk ∈ Z+, |α| = α1 + ... + αn. For every ξ = (ξ1, ξ2, ..., ξn) we assume ξα =
(ξα1

1 , ξα2
2 , ..., ξαn

n ), αk ∈ Z+, ∀k = 1, n. By ∂i =
∂
∂xi

we denote the differentiation
operator and ∂α = ∂α1

1 ∂α2
2 ...∂αn

n . f |Ω will be the restriction of the function f to
the set Ω; χE will denote the characteristic function of the set E. By C∞

0 (Ω)
we will denote the set of all infinitely differentiable functions, whose supports are
compact subsets of Ω, and by C(m) - the class of all domains with m-th order
smooth boundary.

X (Ω) will denote a Banach function space on domain Ω ⊂ Rn with Lebesgue
measure, and X ′ (Ω) will be its associated space. ∥f∥X will be the norm of
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f ∈ X (Ω), and the corresponding associated norm will be denoted by ∥.∥X′ . Unit
balls in Banach function space X (Ω) and its associate space will be denoted by
S and S′, respectively. Xb (Ω) will be the closure of the set of all simple functions
in X (Ω). The set of all functions from X (Ω) with absolutely continuous norm
will be denoted by Xa (Ω).

Many monographs have been dedicated to the theory of Banach function
spaces. We refer the reader, for example, to [1], or [17].

2.1. Convention

Throughout this paper we assume that K =
{
(x1, ..., xn) : |xi| < d

2

}
⊂ Rn

is any cube or K = Rn, X (K) is a Banach function space defined on K with
Lebesgue measure and the norm ∥f∥X(K) = ρ (f). For a domain Ω ⊂ K : Ω ⊂ K,
by X (Ω) we mean the space of restrictions of all functions from X (K) to Ω with
corresponding norm, i.e.

X (Ω) =
{
f ∈ X (K) : ∥f∥X(Ω) = ∥fχΩ∥X(K) <∞

}
.

We will mainly consider only the bounded domain case. Depending on circum-
stances, we assume that f ∈ X (Ω) is extended by zero to K, or to the whole of
Rn, or periodically on Rn considered as a function from X (K), i.e. for a function
f defined on Ω ⊂ K we define the new function fd on Rn in a following way:
firstly we continue f by zero to the whole of K, and then periodically to the
whole of Rn with

∥fd (.+ kd)∥X(K) = ∥fd (.)∥X(K) = ∥f∥X(K) .

If X (K) is a rearrangement-invariant space, it follows that fd (.) and fd (.+ y) ,
(∀y ∈ Rn) are equimeasurable functions, consequently we have

∥fd (.+)∥X(Ω) = ∥fd∥X(Ω) = ∥f∥X(Ω) .

The following theorem holds ([1, 17]).

Theorem 1. a) The inclusions Xa (Ω) ⊂ Xb (Ω) ⊂ X (Ω) are true.
b) |Ω| <∞ ⇒ L∞ (Ω) ⊂ X (Ω) ⊂ L1 (Ω).
c) Subspaces Xa (Ω) and Xb (Ω) coincide if and only if for every finite measure

set E the characteristic function χE has an absolutely continuous norm.

Throughout this paper, we will use the Fatou’s following lemma.

Lemma 1 (Fatou, [1] Lemma 1.5). Let X be a Banach function space and fn ∈
X, (n = 1, 2, ...). If fn → f µ−a.e. and lim infn→∞ ∥fn∥X <∞, then f ∈ X and

∥f∥X ≤ lim inf
n→∞

∥fn∥X .
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Ω + δ = {t+ δ : t ∈ Ω} means that Ω + δ ⊂ K. For arbitrary function
f ∈ X (Ω) and for arbitrarily small δ ∈ Rn : Ω − δ ⊂ K, by Tδf we denote the
additive shift operator defined as

(Tδf) (x) =

{
f (x+ δ) , x+ δ ∈ Ω,
0, x+ δ /∈ Ω .

By Xs (Ω) we will denote the subspace of all functions from X (Ω) with the
following property:

Property α). ∥Tδ (f)− f∥X(K) → 0, δ → 0, where δ ∈ Rn is a shift vector.
Let us consider the following property:

∀Ω : Ω ⊂ K , ∀δ : Ω−δ ⊂ K, ∀f ∈ X (Ω) ⇒ Tδf ∈ X (K) , ∥f∥X(K) = ∥Tδf∥X(K) .

In the sequel, the spaces with this property will be called the spaces with
additive-invariant norm or the additive-invariant Banach function spaces.

For example, rearrangement-invariant Banach function spaces and Morrey
spaces have this property.

Property β). ∀En → ∅ ⇒ ∥χEn∥X(K) → 0.
The Propositions 1-2 below have been proved in [6, 7, 11].

Proposition 1. Let X (K) be an additive-invariant Banach function space and
Ω : Ω ⊂ K be any domain. If Property β) holds, then Xs (Ω) = Xa (Ω) =
Xb (Ω) = C∞

0 (Ω) (the closure is taken in topology of X (Ω)).

Proposition 2. Let X (K) be an additive-invariant Banach function space and
Ω : Ω ⊂ K be any domain. If Property β) holds, then ∀φ ∈ L∞ (Ω). It follows
that φf ∈ Xs (Ω).

By αX and βX we will denote the lower and upper Boyd indices of the space
X, respectively. For more information about Boyd indices we refer the reader to
[1, 2, 17].

Theorem 2. ([2]) Let X be a rearrangement-invariant space. For arbitrary p and
q with 1 ≤ q < 1

βX
≤ 1

αx
< p ≤ ∞, the following embedding holds: Lp ⊂ X ⊂ Lq.

Theorem 3. Let X be a rearrangement-invariant Banach function space with
Boyd indices αX , βX : 0 < αX ≤ βX < 1. Then singular operator K is bounded
in X: K ∈ [X].

Theorem 2 has the following

Corollary 1. Let X (K) be a rearrangement-invariant Banach function space
with Boyd indices αX , βX : 0 < αX ≤ βX < 1, and Ω : Ω ⊂ K be any bounded
domain. Then Property β) holds.
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Proof. Under conditions of this corollary, from Theorem 2 it follows that

0 < αX ≤ βX < 1 ⇒ ∃p, q ∈ [1;∞) : Lp ⊂ X ⊂ Lq.

Let E → ∅. Taking into account that ∀E ⊂ Ω ⇒ χE ∈ Lp, we have

∥χE∥X ≤ const ∥χE∥Lp
→ 0.

The corollary is proved. ◀

We will denote the following spaces of functions by Wm
X (Ω), WXm

s (Ω) and
0
Wm

Xs
(Ω), respectively:

Wm
X (Ω) = {f ∈ X : ∂pf ∈ X, ∀p ∈ Z+ : |p| ≤ m} ,

WXm
s (Ω) =

{
f ∈WXm : ∥Tδf − f∥WXm(Ω) → 0, δ → 0

}
,

0

Wm
Xs

(Ω) = C∞
0 (Ω) (closure taken in the space Wm

X (Ω)), with the corre-
sponding norm

∥f∥Wm
X (Ω) =

∑
|p|≤m

∥∂pf∥X(Ω) . (1)

2.2. Convolution operator

By the convolution of the functions f, h defined on Ω ⊂ K, f ∈ L1 (Ω) , h ∈
X (Ω), we will mean the following relation:

(f ∗ h) (x) =
∫
Rn

fd (x− y)hd (y) dy, (2)

denoted as f ∗g. In the sequel, we suppose that Ω±Ω = {x± y : x, y ∈ Ω} ⊂ K.
In this case, for x ∈ Ω the convolution can be defined as follows:

(f ∗ h) (x) =
∫
Ω
f (x− y)h (y) dy.

Let’s state the following well-known classical facts (see, e.g., [4, pp.38-39]).
Let C0 (R

n) be the space of functions f : lim
|x|→∞

f (x) = 0 with the supremum

norm and B (Rn) = (C0 (R
n))∗ which can be identified with Banach space of

finite measure with the norm ∥dµ∥ =
∫
Rn |dµ|, and the space L1 (Rn) can be

identified with some subspace of B (Rn) by the map f (x) → f (x) dx.
It is well known that ∀f, g ∈ L1 (R

n) the convolution (f ∗ g) (.) is defined
a.e. on Rn and belongs to L1 (Rn). Moreover, the following statement is true:
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Let f ∈ Lp (Rn) , 1 ≤ p ≤ ∞. Then g = f ∗µ =
∫
Rn f (x− y) dµ (y) ∈ Lp (Rn)

and

∥g∥p ≤ ∥f∥p ∥dµ∥ ,

i.e. the convolution acts continuously in Lp (Rn) ([4]).
What can we say if one of the given functions belongs to a Banach function

space? Will the result also belong to the considered Banach space? If the answer
to the latter question is positive, will be the convolution operator bounded?

For f ∈ X, the theorem and lemma below have been proved in [6].

Theorem 4. [6, Th.2.2] Let X be a rearrangement-invariant space, and X ′ be
an associate space. Then

∥f ∗ g∥∞ ≤ ∥f∥X ∥g∥X′ , f ∈ X, g ∈ X ′.

Moreover, if f ∈ Xs, or g ∈ X
′
s, then the convolution operator is continuous in

L∞ (K).

Lemma 2. [6, Lemma 2.1] Let X (K) be a rearrangement-invariant Banach
function space on K and Ω : Ω ⊂ K be some domain. Then for arbitrary pair
f, g ∈ X (Ω) the convolution f ∗ g belongs to X and the estimate

∥f ∗ g∥X(Ω) ≤ ∥f∥X(Ω) ∥g∥L1(Ω)

holds.

It should be noted that the assertions of the above theorem and lemma are
true for an additive-invariant spaces. Their proofs are the same as those of
Theorem 2.2 and Lemma 2.1 in [6], respectively.

For example, let’s prove the lemma in additive-invariant case. Let S′ be the
unit ball of the associate space X ′. Then we have

∥f ∗ g∥X(Ω) = sup
v∈S′

∣∣∫
Ω (f ∗ g) (x) v (x) dx

∣∣ = sup
v∈S′

∣∣∫
K

∫
K f (x− y) g (y) v (x) dydx

∣∣ =
(by Fubini′s theorem) = sup

v∈S′

∣∣∫
K

∫
K f (x− y) v (x) dxg (y) dy

∣∣ ≤
≤

∫
K sup

v∈S′

∣∣∫
K f (x− y) v (x) dx

∣∣ |g (y)| dy =
∫
K ∥f (.− y)∥X |g (y)| dy =

= ∥f∥X(Ω)

∫
Ω |g (y)| dy = ∥f∥X(Ω) ∥g∥L1(Ω) .

Indeed, we only used the relation ∥f (.− y)∥K = ∥f (.)∥X(Ω), i.e. an additive-
invariance property of the space.

Therefore, the assertions of the above-mentioned theorem and lemma can be
restated as follows.
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Theorem 5. Let X (K) be an additive-invariant Banach function space on K,
Ω : Ω ⊂ K be some domain and X ′ (Ω) be an associate space. Then

∥f ∗ g∥∞ ≤ ∥f∥X(Ω) ∥g∥X′(Ω) , f ∈ X (Ω) , g ∈ X ′ (Ω) .

If f ∈ Xs (Ω), or g ∈ X
′
s (Ω), then the convolution operator is continuous in

L∞ (K).

Lemma 3. Let X (K) be an additive-invariant Banach function space on K and
Ω : Ω ⊂ K be some domain. Then for arbitrary pair f, g ∈ X (Ω) the convolution
f ∗ g belongs to X (Ω) and the estimate

∥f ∗ g∥X(Ω) ≤ ∥f∥X(Ω) ∥g∥L1(Ω)

holds.

Lemma 3 has the following corollary.

Corollary 2. Let X (K) be an additive-invariant Banach function space on K
and Ω : Ω ⊂ K be some domain. Then for arbitrary functions f ∈ L1 (Ω) , g ∈
X (Ω) the convolution f ∗ g belongs to X (Ω) and the estimate

∥f ∗ g∥X(Ω) ≤ ∥f∥L1(Ω) ∥g∥X(Ω)

holds.

Proof. It is clear that X (Ω)L1(Ω) = L1 (Ω). Let f ∈ L1 (Ω), {fn} ⊂ X :
lim fn = f in L1 (Ω) and ∥fn∥L1

≤ C. Moreover, let fn → f a.e. on Ω. Then, by
Lemma 3, we have

∥fn ∗ g∥X(Ω) ≤ ∥fn∥L1(Ω) ∥g∥X ≤ C ∥g∥X .

Taking into account the continuity of the convolution operator in L1 (Ω), without
loss of generality we can assume that fn ∗g → f ∗g a.e. on Ω. Then from Fatou’s
lemma it follows that f ∗ g ∈ X and

∥f ∗ g∥X(Ω) ≤ lim ∥fn ∗ g∥X(Ω) ≤ C ∥g∥X(Ω) .

The corollary is proved. ◀
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3. Integral operators

3.1. Riesz potential

Riesz potential and Sobolev integral identity play an exceptional role in the
study of the properties of functions fromWm

p (Ω). Recall that by Sobolev identity
we mean the following relation ([5, 10]):

u (x) =

m−1∑
|α|=0

xα
∫
Ω
bα (y)u (y) dy+

∑
|α|=m

∫
Ω

Aα (x, y)

|x− y|n−m∂
αu (y) dy , ∀u ∈ Cm (Ω) ,

where bα ∈ C
(
Ω
)
, Aα ∈ L∞ (Ω× Ω) (in general, x ̸= y : Aα (x, y) is infinitely

differentiable).
Let Ω ⊂ Rn be a bounded domain, 0 ≤ α < n, A (x, y) ∈ L∞ (Ω× Ω). The

operator defined as

(RA,αf) (x) =

∫
Ω

A (x, y)

|x− y|α
f (y) dy (3)

is called a Riesz potential.
Let kα (x) = 1

|x|α , 0 ≤ α < n. Consider the integral operator Kα with the

kernel kα (x− y) = 1
|x−y|α , i.e.

(Kαu) (x) = (kα ∗ u) (x) =
∫
Ω

u (y)

|x− y|α
dy. (4)

It is clear that the boundedness of the operator Kα implies the boundedness of
the operator RA,α. In the sequel, we will use the following well-known equality:∫

|x−y|<r

dx

|x− y|α
=

|B1|
n− α

rn−α, ∀y ∈ Rn, (5)

where B1 is a unit ball (see, e.g., [5, p.19]). Hence it follows that kα (.) ∈
L1 (Ω) , α ∈ (0, n). So we can apply Corollary 2 in this case to get

Corollary 3. Let X (K) be an additive-invariant Banach function space on K,
Ω : Ω ⊂ K be any domain and α ∈ [0, n). Then the integral operator Kα is
bounded in X (Ω) and the estimate

∥Kαg∥X(Ω) = ∥f ∗ g∥X ≤ ∥kα (.)∥L1(Ω) ∥g∥X(Ω) ≤ C ∥g∥X(Ω) , ∀g ∈ X (Ω) (6)

holds. Consequently, Riesz potential is bounded in X (Ω).



Some Remarks on Integral Operators in Banach Function Spaces 197

Remark 1. Let R > 0 be some fixed positive number and Ω ⊂ K: Ω ⊂ BR (0).
Then the constant C can be chosen independent of Ω ⊂ K. In particular, if K is
a cube, then we can take C = ∥kα∥L1(K).

In the sequel, we are going to study some properties, in particular, compact-
ness of the integral operators generated by the kernels ψi1,...,ik

(x) =
xi1

...xik
|x|n , i.e.

the operators defined by

v(x) = (Ψi1,...,iku) (x) =

=
1

(k − 1)!σn

n∑
i1,...,ik=1

∫
Ω

(xi1 − yi1) ... (xik − yik)

|x− y|n
u (y) dy, k ∈ N,

on the b.f.s X (Ω), or on its subspace Xs (Ω). We will also prove some repre-

sentation theorems for the functions from
0
Wm

Xs
(Ω), which play an exceptional

role in getting embedding theorems. We will denote the corresponding integral
operators by ψi1...ik . It is clear that the estimate

|ψi1...ik (x)| =
|xi1 ...xik |

|x|n
≤ |x|k

|x|n
=

1

|x|n−k
= kn−k (x) ,

holds. Hence, by Corollary 3 it follows that the considered integral operators are
bounded in X (Ω). Moreover

|(Ψi1...iku) (x)| ≤ (Kn−k |u|) (x) a.e.⇒ ||(Ψi1...iku)||X(Ω) ≤ ∥(Kn−k |u|)∥X(Ω) ,

which implies

i) if U ⊂ X (Ω) ⇒ Kn−k (|U |) is relatively compact in X (Ω), then Ψi1...ik (U)
is also relatively compact in X (Ω), where |U | = {|u| : u ∈ U}. Consequently,
compactness of the operator Kn−k in X (Ω) implies compactness of the operator
Ψi1...ik in X (Ω).

ii) Kn−ku ∈ Xa ⇒ Ψi1...iku ∈ Xa.

First let’s prove that the operator Kα, 0 ≤ α < n, acts boundedly in Xs (Ω),
i.e. Xs (Ω) is an invariant subspace of the operator Kα. It should be noted that
we assume that the function from X (Ω) is extended by zero outside of Ω and the
given function is identified with this extended function.

Lemma 4. Let X (K) be an additive-invariant space with Property β) and Ω :
Ω ⊂ K be any bounded domain in Rn. Then Kα ∈ [Xs (Ω)], 0 ≤ α < n.
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Proof. Let u ∈ Xs (Ω), v = Kαu ∈ X (Ω) and δ < δ0 : Ωδ0 ⊂ K. ∀x ∈ Ω we
have

|v (x+ δ)− v (x)| =
∣∣∫

Ω (kα (x+ δ − y)− kα (x− y))u (y) dy
∣∣ =

=
∣∣∣∫(Ω−δ)

1
|x−z|αu (z + δ) dz −

∫
Ω

1
|x−y|αu (y) dy

∣∣∣ =
=

∣∣∣∫Ω−δ
⋃

Ω
1

|x−y|α (u (y + δ))− u (y) dy
∣∣∣ = |(Kα(Tδ |u (.)| − |u (.)|) (x)| ⇒

⇒ ∥v (.+ δ)− v (.)∥X(K) ≤ const ∥Kα∥[X(K)] ∥Tδ |u| − |u|∥X(K)−→
δ→0

0 ⇒
⇒ v (.) ∈ Xs (Ω) .

The lemma is proved. ◀

Now let’s prove that the operator Kα, 0 ≤ α < n , is compact in Xs (Ω).
For this, we will prove that the operator Kα can be uniformly approximated by
compact operators.

Consider the general case. Let Ω ⊂ K ⊂ Rn, Ω′ ⊂ Rm, X (Ω) be a Banach
function space, and k (x, y) be a function defined on Ω′×Ω. Consider the integral
operator K defined as

v (x) = Ku =

∫
Ω
k (x, y)u (y) dy.

Let the kernel k (x, y) have the following properties:

i) k (x, y) is a bounded function, i.e., ∃b > 0 : sup
x∈K,y∈Ω

|k (x, y)| ≤ b <∞;

ii) k (x, y) is uniformly continuous with respect to the first variable:

sup
x, z ∈ Ω′

|x− z| ≤ r

sup
y∈Ω

|k (x, y)− k (z, y)| ≤ ω (r)−→
r→0

0.

Lemma 5. Let Ω ⊂ K be any domain, Ω′ ⊂ Rm be an arbitrary bounded mea-
surable subset, and k (x, y) have the properties i)-ii). Then the operator K acts
compactly from X (Ω) to C

(
Ω′
)
.

Proof. Let U ⊂ X (Ω) be a bounded subset. For an arbitrary function u ∈ U ,
using Holder’s inequality, we have

|v (x)| =
∣∣∫

Ω k (x, y)u (y) dy
∣∣ ≤ ∫

Ω |k (x, y)u (y)| dy ≤ b
∫
Ω 1 · |u| dy ≤

≤ b ∥1∥X′(Ω) ∥u∥X(Ω) , ∀x ∈ Ω′.

Thus, the range of a bounded set of X (Ω) is a bounded set in C
(
Ω′
)
.
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If |x− z| ≤ r, using ii) we have

|v (x)− v (z)| ≤
∫
Ω
|k (x, y)− k (z, y)| |u (y)| dy ≤

≤ ω (r)

∫
Ω
|u (y)| dy ≤ ω (r) · ∥1∥X′(Ω) ∥u∥X(Ω)−→r→0

0.

Hence, the operator K transforms a bounded set of X(Ω) to an equicontinuous
family in C

(
Ω′
)
. From the Arzela-Ascoli theorem it follows that K (U) is a

relatively compact set in C
(
Ω′
)
. Consequently, K is a compact operator acting

from X (Ω) into C
(
Ω′
)
.

The lemma is proved. ◀

Corollary 4. Let Ω = Ω′ ⊂ K and k (x, y) have the properties i)-ii). Then the
operator K acts compactly from X (Ω) into Xs (Ω).

Proof. As is known, the continuous embedding C
(
Ω
)
⊂ X (Ω) holds, i.e. if a

sequence converges in C
(
Ω
)
, then it also converges in Xs (Ω).

The corollary is proved. ◀

Corollary 5. Let Ω = Ω′ ⊂ K and k (x, y) have the properties i)-ii). Then the
operator K acts compactly from Xs (Ω) into Xs (Ω).

Consider the operator Kα, 0 ≤ α < n . Define the following kernels and
corresponding integral operators. Let φ (r) be a smooth monotone function equal
to 1 if r ≥ 1, and to 0 if r ≤ 1

2 . Let

φh (r) = φ
( r
h

)
, kα,h (x, y) =

1

|x− y|α
φh (|x− y|) .

It is obvious that the kernel kα,h (x, y) is a bounded and continuous function of
x and y. Consequently, it has the properties i)-ii). Hence it follows that the
integral operators Kα,h act compactly from X (Ω), and also from Xs (Ω), into
Xs (Ω).

Corollary 6. Let X (K) be an additive-invariant space with Property β). Let
Ω : Ω ⊂ K be any bounded domain in Rn. Then the estimate

∥Kα −Kαh∥[X(Ω)]−→
h→0

0

holds. Consequently, Kα is a compact operator acting in X (Ω).
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Proof. Let u ∈ Xs (Ω). Taking into account the relation

kα (x− y)− kαh (x− y) =

=


0, |x− y| > h,

|kα(x− y) (1− φh (|x− y|))| ≤ kα (x− y) , h
2 < |x− y| ≤ h,

kα (x− y) , |x− y| ≤ h
2 ,

by Corollary 4 we have

||((Kα −Kαh)u) (x)||X(Ω) =
∣∣∣∣∫

Ω(kα (x− y)− kαh (x− y))u (y) dy
∣∣∣∣
X(Ω)

≤
≤ ∥kα (.)− kα,h (.)∥L1(Ω) ∥u∥X(Ω) = ∥kα (.)− kα,h (.)∥L1(Bh(0))

∥u∥X(Ω) ≤
≤ ∥kα (.)− kα,h (.)∥L1(Bh(0))

∥u∥X(Ω) .

Hence, by the relation (5) it follows that

∥Kα −Kαh∥[X(Ω)]−→
h→0

0,

i.e. the operator Kα can be approximated by compact operators. Consequently,
it is a compact operator.

The corollary is proved. ◀

Theorem 6. Let X (K) be an additive-invariant space with Property β) and

Ω : Ω ⊂ K be any bounded domain in Rn. Then, for an arbitrary u ∈
0

W 1
Xs

(Ω)
the following representation is true:

u (x) =
1

σn

n∑
i=1

∫
Ω

xi − yi
|x− y|n

∂u

∂yi
dy,

where σn is an area of the unit sphere in Rn, i.e. σn = 2π
n
2

(
Γ
(
n
2

))−1
.

Proof. The proof is a modification of the classical one. In case u ∈ C∞
0 (Ω),

all argumentations of classical case hold. In general case of ∀u ∈
0

W 1
Xs

(Ω), we use
the fact that ∃ {uk} ⊂ C∞

0 (Ω) : limuk = u in W 1
Xs

(Ω). Taking into account the
continuity of the operator Ki in X (Ω) and differentiation operator from W 1

X (Ω)
into X (Ω), we have

∂uk
∂xj

→ ∂u

∂xj
, k → ∞, j = 1, n,

which ends the proof. ◀
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Corollary 7. The space
0

W 1
Xs

(Ω) can be compactly embedded into Xs (Ω).

Proof. This is a direct consequence of Theorem 6 and Corollary 6. ◀

Corollary 8. Let X (K) be an additive-invariant Banach function space and the
domain Ω : Ω ⊂ K admit extension of the functions from X (Ω). Then the
assertion of Corollary 6 is true for the space W 1

Xs
(Ω).

Proof. Let Ω1 : Ω ⊂ Ω1, Ω1 ⊂ K and θ : W 1
Xs

(Ω) →
0

W 1
Xs

(Ω1) be an
extension operator. Let U ⊂ W 1

Xs
(Ω) be any bounded subset. It is clear that

θ (U) ⊂
0

W 1
Xs

(Ω1) will be a bounded subset of
0

W 1
Xs

(Ω1). From Corollary 6 it
follows that θ (U) is compact inXs (Ω1), which implies that U = θU |Ω is compact
in Xs (Ω).

The corollary is proved. ◀

To generalize the assertion of Theorem 6, we need the following statement
(see [10, p.174]):

Let v ∈ C∞
0 (Rn) and k ∈ N be a given number. Then the following repre-

sentation formula is true:

v (x) =
1

(k − 1)!σn

∑
|i|=k

∫
Rn

(xi1 − yi1)
li ... (xin − yin)

in

|x− y|n
∂kv (y)

∂yi
dy, (7)

where i = (i1, ..., in).
Indeed, for fixed i : |i| = k the following is true:

n∑
|j|=1

∂

∂xj

(xi1)
li ... (xin)

in

|x|n
= k

(xi1)
li ... (xin)

in

|x|n
.

From this it follows that the right-hand side in (7) is equal to

∑
|i|=k

∫
Rn

(xi1
−yi1)

li ...(xin−yin )
in

|x−y|n
∂kv(y)
∂yi

dy =

= (k − 1)!
∑

|i|=k

∫
Rn

(xi1
−yi1)

li ...(xin−yin )
in

|x−y|n
∂v(y)
∂yj

dy
by th.3.1

= (k − 1)!σnv (x) .

Corollary 9. Let X (K) be an additive-invariant Banach function space with

Property β) and Ω : Ω ⊂ K be any bounded domain. For arbitrary u ∈
0

Wm
Xs

(Ω),
the representation formula

v (x) =
1

(m− 1)!σn

∑
|i|=m

∫
Rn

(xi1 − yi1)
li ... (xin − yin)

in

|x− y|n
∂mv (y)

∂yi
dy
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is true.

Proof. For k = 1, the assertion has been proved in Theorem 6. In general

case, it is a direct consequence of the relation
0
Wm

Xs
(Ω) = C∞

0 (Ω), boundedness
of the potential-type integral operators and representation formula (7). ◀

In particular, from this corollary we obtain the following embedding-type
statement.

Corollary 10. Let X (K) be an additive-invariant Banach function space. Then

a) the space
0
Wm

Xs
(Ω) can be compactly embedded into Xs (Ω);

b) if the domain Ω : Ω ⊂ K admits extension of the functions from Wm
Xs

(Ω),
then Wm

Xs
(Ω) can be compactly embedded into Xs (Ω).
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