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The Absence of Positive Global Periodic Solution
of a Second-Order Semi Linear Parabolic Equation
With Time-Periodic Coefficients

Sh.G. Bagyrov

Abstract. Second order semilinear parabolic equation ∂u
∂t = div(A(x, t)∇u) + h(x, t, u)

with time-periodic coefficients is considered in domain Ω × (−∞,+∞), where Ω is the
exterior of a compact set in Rn

x . Depending on the behavior of the function h(x, t, u)
at infinity, the conditions are found under which the positive periodic solution does not
exist.
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1. Introduction

Denote R+ = [0;+∞), BR = {x : |x| < R}, B′
R = {x : |x| > R},

SR = {x : |x| = R} , BR1,R2 = {x : R1 < |x| < R2}, QR1,R2

T = BR1,R2 × (0, T ),

QR,∞T = B′
R × (0, T ), QT = Ω × (0, T ), Q = Ω × (−∞; +∞), where Ω is the

exterior of a compact set D in Rnx containing the origin.
Consider the equation

∂u

∂t
= div(A(x, t)∇u) + h(x, t, u) (1)

in the cylinderQ, where n ≥ 3, A(x, t) = (aij(x, t))
n
ij=1, h(x, t, u) : Ω×(−∞,+∞)×

R+ → R, aij(x, t) are bounded, measurable, T - periodic in t functions, and there
exist constants ν1, ν2 > 0 such that

ν1 |ξ|2 ≤ (Aξ, ξ) ≤ ν2 |ξ|2 (2)
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for every (x, t) ∈ Q, ξ = (ξ1, ..., ξn) ∈ Rn. Here ∇u =
(
∂u
∂x1

, ..., ∂u∂xn

)
, A∇u =

=

(
n∑
j=1

aij
∂u
∂xj

)n
i=1

, (Aξ, η) =
n∑

i,j=1
aijξiηj , ξ = (ξ1, ..., ξn), η = (η1...., ηn),

div(A∇u) =
n∑

i,j=1

∂
∂xi

(aij(x, t)
∂u
∂xj

).

We will study the existence of a global positive solution of equation (1). The
matters of existence and non-existence of global solutions for different classes of
differential equations and inequalities play an important role both in theory and
applications, that is why they have always been a cause for constant interest
of mathematicians. Interest in such problems arose after Fujita’s popular paper
[16]. After this work, many authors began to investigate the question of existence
of global solutions for various types of equations with nonlinearities of various
types.

A lot of works have been dedicated to these matters (see [1,2,8,11,13,17,21,22,
23,25,26,28]). For useful reviews of such works, we refer the readers to the article
[24], the monograph [27], and the book [30].

In particular, the existence of solutions to the periodic parabolic equations
has also been a study object for many researchers (see [10,14,15,18,19,20,29,31]).
One of the earliest works dedicated to periodic parabolic equations was Seidman’s
[31], which treated the existence of non-trivial periodic solution for the following
problem:

∂u

∂t
= ∆u+ a0(x, t) |u|q , (x, t) ∈ Ω′ × (0,+∞), u/∂Ω′ = 0, (∗)

with q = 0, where a0(x, t) is a periodic in t function and Ω′ ⊂ Rn is a bounded
domain. Since then, many authors have considered the problem (*) for q > 0.
Beltramo and Hess [10] studied the problem (*) for q = 1 and showed that
for specially chosen a0(x, t) it may have non-trivial periodic solutions. Esteban
[14, 15] proved that, for every q > 1 when n ≤ 2, and for 1 < q < n

n−2 when
n > 2 the problem (*) has positive periodic solutions for any kind of a0(x, t) > 0.
He also proved that, for n > 2, q ≥ n+2

n−2 this problem has no positive periodic
solution. In 2004, Quittner [29] proved, with some restrictions on a0(x, t), that
this problem has positive solutions for 1 < q < n+2

n−2 .

In [4], the equation (1) has been considered in Q with nonlinearity h(x, t, u) =
a0(x, t) |u|q, and it was proved that if a0(x, t) ≥ c |x|σ , then there is no positive
solution for 2 + σ + (2 − n)(q − 1) ≥ 0. In [5], the equation (1) has been again
considered in Q and it was proved that if a0(x, t) ≥ c |x|σ lns |x|, then there is
no positive solution for 2 + σ + (2 − n)(q − 1) > 0, s ∈ (−∞,+∞) and for
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2 + σ + (2− n)(q − 1) = 0, s ≥ −1. In [6], the equation (1) was considered with
a weight, and in [7] a system of such equations was considered.

In the present article, the nonlinearity has a more general form. It is the kind
of nonlinearity that was considered in [12], where the existence of non-negative
solutions of the equation ∆u+ h(x, u) = 0 in Ω with the condition u/∂Ω ≥ 0 was
discussed. In this paper, we obtain similar results for parabolic equations with
time-periodic coefficients.

2. Main result and its proof

Before giving a definition for solution, we consider the following function
space:

W
1, 1/2
2 (QT ) =

=

{
u(x, t+ T ) = u(x, t), u(x, t) ∈W 1,0

2 (QT ),
+∞∑

k=−∞
|k|
∫
Ω
|uk(x)|2 dx <∞

}
,

where

uk(x) =
1

T

∫ T

0
u(x, t) exp

{
−ik2π

T
t

}
dt.

The norm in this space is defined as follows:

∥u∥2
W

1, 1/2
2 (QT )

= ∥u∥2L2(QT ) + ∥∇u∥2L2(QT ) +

+∞∑
k=−∞

|k|
∫
Ω
|uk(x)|2 dx.

By
◦
W

1, 1/2

2 (QT ) we mean a completion of C0,∞(QT ) with respect to the norm
∥ · ∥

W
1, 1/2
2 (QT )

, where C0,∞(QT ) is a set of infinitely differentiable functions on

Q, which are T periodic in t and vanish in the vicinity of ∂Ω.

A solution of equation (1) is defined as a function

u(x, t) ∈W
1, 1/2
2,loc (QT )

⋂
L∞,loc(QT ) satisfying the corresponding integral identity

2π
k=+∞∑
k=−∞

ik

∫
Ω
uk(x)φ−k(x)dx+

∫
Q
(A(x, t)∇u,∇φ)dxdt =

∫
Q
h(x, t, u)φdxdt

for each function φ(x, t) ∈
0
W

1, 1/2

2 .

Denote

L0u ≡ div(A(x, t)∇u)− ∂u

∂t
.
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Consider the linear equation

L0u+ P (x, t)u = 0 in QR,∞T , (3)

where
P (x, t+ T ) = P (x, t), P (x, t) ∈ L∞,loc(Q

R,∞
T ).

The following two lemmas are true (see [3]).

Lemma 1. There exists a constant C0 > 0 depending on n, ν1, ν2 and not de-
pending on R such that, if P (x, t) ≥ C0

|x|2 , then equation (3) has no positive super

solution in QR,∞T .

Note that if aij(x, t) = δij , then C0 =
(
n−2
2

)2
(see [9]).

Lemma 2. Let n ≥ 3 and u(x, t) ∈ W
1, 1/2
2,loc (QR,∞T ) be a continuous and nonneg-

ative function in Q̄R,∞T such that L0u ≤ 0 in QR,∞T and u(x, t) > 0 on SR. Then

u(x, t) ≥ β0 |x|2−n , (x, t) ∈ QR,∞T , β0 = const > 0.

In this article, the nonlinearity has a more general form, namely, we assume
that h(x, t, u) ≥ h̃(x, u) ≥ 0 for all (x, t) ∈ Q and h̃ : Ω×R+ → R+ is a function
satisfying the following assumption:

(H):
a) for any x ∈ B′

e

h̃(x, s1)

s1
≥ h̃(x, s2)

s2
,

if s1 ≥ s2 > 0,
b) for any τ > 0,

lim
|x|→+∞

inf h̃(x, τ |x|2−n) |x|n > C0,

if b) fails, we assume that
b1) there exists σ1 ∈ (0, 1) such that for any τ > 0

lim
|x|→+∞

inf h̃(x, τ |x|2−n) |x|n (ln |x|)σ1 > 0,

or
b2) there exists γ > 1 such that for any τ > 0, α ≥ 0

lim
|x|→+∞

inf h̃(x, τ |x|2−n (ln |x|)α) |x|n (ln |x|)−αγ+1 > 0,
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and

b3) there exists σ2 > 0 such that for any τ > 0

lim
|x|→+∞

inf
h̃(x, τ |x|2−n (ln |x|)σ2)

τ |x|−n (ln |x|)σ2
> C0.

The main result is the following theorem.

Theorem 1. Let n ≥ 3 and A(x, t) satisfy the condition (2). Then under the
assumption (H) equation (1) has no positive solution in Q.

Proof. Let equation (1) have a positive solution u(x, t) > 0. Then for u(x, t)
in QR,∞T all the conditions of Lemma 2 are satisfied, and, consequently, u(x, t) ≥
β0|x|2−n, where R is such that D ⊂ BR(0).

First, consider the cases (H)− a), b)

Consider the function h(x,t,u)
u . By Lemma 2 and (H)− a), b) for large |x| we

obtain

h(x, t, u)

u
≥ h̃(x, u)

u
≥ h̃(x, β0 |x|2−n)

β0 |x|2−n
=

1

|x|2
h̃(x, β0 |x|2−n)

β0 |x|−n
=

=
1

|x|2
1

β0
h̃(x, β0 |x|2−n) |x|n ≥ C0 + ε

β0

1

|x|2
>
C0 + ε

|x|2
.

Using this inequality, we get

0 = L0u+ h(x, t, u) ≥ L0u+
h(x, t, u)

u
u ≥ L0u+

C0 + ε

|x|2
u.

And this contradicts the assertion of Lemma 1.

Let b) not be fulfilled, but b1) and also b3) be fulfilled. Again, suppose
that u(x, t) is a positive solution to equation (1). Then, by Lemma 2, u(x, t) ≥
β0|x|2−n. Using b1), for large |x| we get

0 = L0u+ h(x, t, u) = L0u+
h(x, t, u)

u
u ≥ L0u+

h̃(x, u)

u
u ≥

≥ L0u+
h̃(x, β0 |x|2−n)
β0 |x|2−n

u ≥ L0u+
ε |x|−n ln−σ1 |x|

β0 |x|2−n
u =

= L0u+
C

|x|2 lnσ1 |x|
u .
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Consider the equation

L0u+
C

|x|2 lnσ1 |x|
u = 0 in QR0,∞

T , (4)

where R0 > e.
Now let us show that the equation (4) has a positive solution v(x, t) in QR0,∞

T .

To do this, consider the following problem in QR0,∞
T :

L0v +
C

|x|2 lnσ1 |x|
v = 0, (5)

v||x|=R0
= 1, v||x|=R = 0, v(x, t+ T ) = v(x, t). (6)

It is known the that problem (5), (6) has solutions vR(x, t). Let’s prove that
0 ≤ vR ≤ 1. First let’s prove that vR ≤ 1. Consider the function ψ(x, t) =
(vR − 1)+ = max

Q
R0,R
T

{vR − 1, 0}. Taking the test function ψ(x, t) in the definition

of the solution, we obtain

2π
+∞∑

k=−∞
(ik)

∫
BR0,R

vRk
ψ−kdx+

∫
sup pψ

(A∇vR,∇vR)dxdt =

=

∫
sup pψ

C

|x|2 lnσ1 |x|
vR(vR − 1)dxdt.

It is easy to show that the first term on the left-hand side is equal to zero.
Then, using (2) and Hardy’s inequalities, we obtain

ν1

∫
sup pψ

|∇vR|2 dxdt+
∫
sup pψ

C

|x|2 lnσ1 |x|
vRdxdt ≤

≤
∫
sup pψ

C

|x|2 lnσ1 |x|
v2Rdxdt ≤ C1

∫
sup pψ

|∇vR|2 dxdt.

Take ε such that C1 < ν1. As a result, we get

(ν1 − C1)

∫
sup pψ

|∇vR|2 dxdt+
∫
sup pψ

C

|x|2 lnσ1 |x|
vRdxdt ≤ 0.

Since all integrals in this inequality are positive, this is possible only if sup pψ = 0.
This means that it really is vR ≤ 1. Similarly, we can show that vR ≥ 0.

Since 0 ≤ vR ≤ 1 for each R and vR is a solution to problem (5),(6), in each
compact set, the sequence of functions vR is Hölder continuous and uniformly
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bounded. Then, by the Arzela theorem, in each compact set, the sequence of
functions vR converges uniformly to some function v(x, t), which is a positive
solution of equation (3) in QR0,∞

T .
Let v(x, t) be a positive solution of equation (3). In the definition of the

solution, we take a test function φ(x, t) such that 0 ≤ φ(x, t) = φ(x) ∈ C∞,
|∇φ|2 ≤ C2

|x|2 , φ(x) = 0 for |x| ≤ R0, |x| > 2ρ and φ(x) = 1 for 2R0 ≤ |x| ≤ ρ.

Then we get the following integral equality:∫
Q

R0,2ρ
T

C

|x|2 lnσ1 |x|
vφdxdt =

∫
Q

R0,2ρ
T

(A∇v,∇φ)dxdt. (7)

Given that v(x, t) ≥ β0 |x|2−n , we estimate the left-hand side of (7) from
below, and the right-hand side from above:

C

∫
Q

R0,2ρ
T

vφ

|x|2 lnσ1 |x|
dxdt ≥ C2

∫
Q

2R0,ρ
T

β0 |x|2−n

|x|2 lnσ1 |x|
dxdt = C3

∫ ρ

2R0

dr

r lnσ1 r
=

= C3 ln
−σ1+1 r

∣∣ρ
2R0

≥ C3 ln
1−σ1 ρ− C3 ln

1−σ1 2R0 =

= C3 ln
1−σ1 ρ

(
1− ln1−σ1 2R0

ln1−σ1 ρ

)
≥ C4 ln

1−σ1 ρ, (8)

∫
Q

R0,2ρ
T

(A∇v,∇φ)dxdt =
∫
Q

R0,2R0
T

n∑
i,j=1

aij(x, t)
∂v

∂xj

∂φ

∂xi
dxdt+

+

∫
Qρ,2ρ

T

n∑
i,j=1

aij(x, t)
∂v

∂xj

∂φ

∂xi
dxdt ≤

≤ C5 + C6

(∫
Qρ,2ρ

T

|∇v|2 dxdt

) 1
2
(∫

ρ<|x|<2ρ
|∇φ|2 dx

) 1
2

≤

≤ C5 + C7

(∫
Qρ,2ρ

T

|∇v|2 dxdt

) 1
2
(∫

ρ<|x|<2ρ

1

|x|2
dx

) 1
2

≤

≤ C5 + C8ρ
n−2
2

(∫
Qρ,2ρ

T

|∇v|2 dxdt

) 1
2

. (9)

Using the Caccioppoli and Harnack inequalities, we estimate the last integral
as follows: (∫

Qρ,2ρ
T

|∇v|2 dxdt

) 1
2

≤ C9

(∫
Q

ρ/ 2,3ρ
T

v2

ρ2
dxdt

) 1
2

≤
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≤ C10

(∫
Q

ρ/ 2,3ρ
T

(min v)2

ρ2
dxdt

) 1
2

= C11ρ
n−2
2 min
Q

ρ/ 2,3ρ
T

v .

Taking into account (8) and (9) in (7), we get

C4 ln
1−σ1 ρ ≤ C5 + C11ρ

n−2 min
Q

ρ/ 2,3ρ
T

v .

From here

min
Q

ρ/ 2,3ρ
T

v ≥ 1

C11
ρ2−n(C4 ln

1+σ1 ρ− C5) ≥ C12ρ
2−n ln1−σ1 ρ.

This means that for large |x|

v(x, t) ≥ C12 |x|2−n ln1−σ1 |x| . (10)

Taking into account (10) and taking the test function as in (7), we obtain

C

∫
Q

R0,2ρ
T

vφ

|x|2 lnσ1 |x|
dxdt ≥ C

∫
Q

2R0,ρ
T

C12 |x|2−n ln1−σ1 |x|
|x|2 lnσ1 |x|

dxdt =

= C13

∫ ρ

2R0

ln1−2σ1 rdr

r
≥ C14 ln

2(1−σ1) ρ. (11)

Similar to the way we got (10), using (11), we get

v(x, t) ≥ C15 |x|2−n ln2(1−σ1) |x| . (12)

Then by induction we will have that for any k ∈ N

v(x, t) ≥ C16 |x|2−n lnk(1−σ1) |x| . (13)

Since there is k0 ∈ N such that k(1−σ1) ≥ σ2 for k ≥ k0, from (13) it follows
that

v(x, t) ≥ C17 |x|2−n lnσ2 |x| . (14)

Let vR(x, t) be a solution to problem (3), (4). Since u(x, t) is a super solution
of equation (3), it is easy to see that

WR(x, t) = u(x, t)− C18vR(x, t)

satisfies the inequality

L0WR +
C0

|x|2 lnσ1 |x|
WR ≤ 0,
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where C18 = 1
2 min
|x|=R0

u(x, t), WR(x, t) > 0 for |x| = R0, WR(x, t) ≤ 0 for |x| = R

and WR(x, t+ T ) =W (x, t).
Just as we have shown that 0 ≤ vR ≤ 1, we can also easily show that WR ≥ 0

for any R. This means u(x, t) ≥ C18vR(x, t). If we pass to the limit as R→ +∞,
we get u(x, t) ≥ C18v(x, t). Then it follows from (14) that for large |x|

u(x, t) ≥ C18 |x|2−n lnσ2 |x| . (15)

Since u(x, t) is a positive solution of equation (1), then taking into account
(15) and b3), we obtain

0 = L0u+ h(x, t, u) = L0u+
h(x, t, u)

u
u ≥ L0u+

h̃(x, u)

u
u ≥

≥ L0u+
h̃(x,C18 |x|2−n lnσ2 |x|)
C18 |x|2−n lnσ2 |x|

u ≥ L0u+
1

|x|2
h̃(x,C18 |x|2−n lnσ2 |x|)

C18 |x|−n lnσ2 |x|
u ≥

≥ L0u+
C0 + ε

|x|2
u.

So, u(x, t) is a positive solution to the inequality

L0u+
C0 + ε

|x|2
u ≤ 0 in QR0,∞

T .

And this contradicts Lemma 1.
Let b1) not be fulfilled, but b2) and b3) be fulfilled.
If u(x, t) is a positive solution to equation (1), then again using Lemma 2 and

taking α = 0, b2) we obtain

0 = L0u+ h(x, t, u) = L0u+
h(x, t, u)

u
u ≥ L0u+

h̃(x, u)

u
u ≥

≥ L0u+
h̃(x, β0 |x|2−n)
β0 |x|2−n

u ≥ L0u+ C
|x|−n ln−1 |x|
β0 |x|2−n

u ≥ L0u+
β

|x|2 ln |x|
u ,

where β = C
β0
. Hence,

L0u+
β

|x|2 ln |x|
u ≤ 0.

Consider the following equation:

L0v +
β

|x|2 ln |x|
v = 0 in QR0,∞

T , (16)
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where R0 > e
Similar to the previous case, this equation has a positive solution v(x, t) and

u(x, t) ≥ C18v(x, t).
We get a lower estimate for v(x, t) with large |x|.
Taking the test function φ(x) as in the previous case, from the definition of

the solution we obtain∫
Q

R0,2ρ
T

βvφ

|x|2 ln |x|
dxdt ≤ C19 + C20ρ

n−2min
Qρ,2ρ

T

v. (17)

Switching to polar coordinates, from here we can write the following:∫ ρ

2R0

rn−3mr(v)

ln r
dr ≤ C21

β
+
C22

β
mρ(v)ρ

n−3 1

ln ρ
ρ ln ρ, (18)

where by mr(v) we denote mr(v) = inf
|x|=r

v. Also denote

f(ρ) =

∫ ρ

2R0

rn−3mr(v)

ln r
dr.

Then (18) can be written in the following form:

f(ρ) ≤ C21

β
+
C22

β
f ′(ρ)ρ ln ρ.

From here

f ′(ρ)− β

C22

1

ρ ln ρ
f(ρ) +

C21

C22

1

ρ ln ρ
≥ 0. (19)

We multiply each side of (19) by the function

e
− β

C22

∫ dρ
ρ·ln ρ = e

− β
C22

ln ln ρ
= (ln ρ)

− β
C22 .

As a result, we have(
f(ρ)(ln ρ)

− β
C22 − C21

β
(ln ρ)

− β
C22

)′

≥ 0. (20)

This means that the function(
f(ρ)− C21

β

)
(ln ρ)

− β
C22

is non-decreasing. Then for ρ > R1

f(ρ)− C21

β
≥ (ln ρ)

β
C22

(
f(R1)−

C21

β

)
(lnR1)

− β
C22 ,
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where R1 is such that f(R1)− C21
β > 0.

Using all this, from (18) we obtain the following inequality:

C21

β
+
C22

β
mρ(v)ρ

n−2 ≥ f(ρ) ≥ C21

β
+ C23(ln ρ)

β
C22 ,

where C23 =
(
f(R1)− C21

α

)
(lnR1)

− β
C22 .

As a result, we have

mρ(v) ≥ C24ρ
2−n(ln ρ)

β
C22 .

Hence, by Harnack’s inequality

v(x, t) ≥ C24 |x|2−n (ln |x|)
β

C22 .

Since u(x, t) ≥ C18v(x, t), for large |x| we obtain the following estimate for
u(x, t):

u(x, t) ≥ C25 |x|2−n (ln |x|)
β

C22 . (21)

Taking the test function φ(x) as before, and using the estimate (19) and b2),
from the definition of the solution of equation (1) we obtain∫

Q
R0,2ρ
T

h(x, t, u)φdx ≤ C1 + C2ρ
n−2 min

Qρ,2ρ
T

u(x, t). (22)

Let’s estimate the left-hand side from below:∫
Q

R0,2ρ
T

h(x, t, u)φdxdt ≥
∫
Q

2R0,ρ
T

h̃(x, u)

u
udxdt ≥

≥
∫
Q

2R0,ρ
T

h̃

(
x,C25 |x|2−n (ln |x|)

β
C22

)
C25 |x|2−n (ln |x|)

β
C22

udxdt ≥

≥
∫
Q

2R0,ρ
T

h̃

(
x,C25 |x|2−n (ln |x|)

β
C22

)
dxdt ≥

≥ C26

∫
2R0<|x|<ρ

|x|−n (ln |x|)
β

C22
γ−1

dx ≥

≥ C26

∫ ρ

2R0

r−n(ln r)
β

C22
γ−1

rn−1dr = C26(ln r)
βγ
C22

∣∣∣∣ρ
2R0

=
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= C26(ln ρ)
βγ
C22 − C26(ln(2R0))

βγ
C22 ≥ C26(ln ρ)

βγ
C22 .

As a result, from (22) we obtain

C27(ln ρ)
βγ
C22 ≤ C1 + C2ρ

n−2min
Qρ,2ρ

T

u(x, t).

Hence, by Harnack’s inequality, we obtain

u(x, t) ≥ C28 |x|2−n (ln |x|)
βγ
C22 . (23)

Doing the same, but this time using estimate (23), we get the following estimate:

u(x, t) ≥ C28 |x|2−n (ln |x|)
βγ2

C22 .

As a result, due to mathematical induction, we will have

u(x, t) ≥ C29 |x|2−n (ln |x|)
βγk

C22 ,

where k is an arbitrary positive integer.

Since γ > 1, there exists k0 such that βγk

C22
> σ2 for k ≥ k0 .

Then it is obvious that

u(x, t) ≥ C30 |x|2−n (ln |x|)σ2 (24)

for large |x|. Then using (24) and b3) we get the following:

0 = L0u+ h(x, t, u) ≥ L0u+ h̃(x, u) = L0u+
h̃(x, u)

u
u ≥

≥ L0u+
h̃
(
x,C30 |x|2−n ln |x|σ2

)
C30 |x|2−n ln |x|σ2

u ≥ L0u+
C0 + ε

|x|2
u.

Thus, we have obtained that there exists ε > 0 such that u(x, t) is a super solution
of the equation

L0u+
C0 + ε

|x|2
u = 0.

This contradicts Lemma 1. The proof of the theorem is finished.
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Example 1. Consider the equation

∂u

∂t
= div(A(x, t)∇u) + a0(x, t) |u|q

in Q, where q > 1, a0(x, t) is a T− periodic function in t and a0(x, t) ≥
a0 |x|s lnθ |x|, s > −2. Here h̃(x, u) = a0 |x|s lnθ |x| |u|q and it is clear that the
condition a) is satisfied. Then for any τ > 0

h̃(x, τ |x|2−n) |x|n > a0τ
q |x|s+(2−n)q+n lnθ |x| ≥ C |x|s+2+(2−n)(q−1) lnθ |x| .

From this, it is clear that at 2 + s+ (2− n)(q − 1) > 0, θ ∈ R or 2 + s+ (2−
n)(q− 1) = 0, θ > 0 condition b) is satisfied and therefore a positive solution does
not exist.

Let now 2 + s + (2 − n)(q − 1) = 0,−1 ≤ θ ≤ 0. First consider the case
−1 < θ ≤ 0. Let’s check that in this case, b1), b3) are fulfilled. Since −1 < θ ≤ 0,
there exists σ1 ∈ (0, 1) such that σ1 + θ > 0. Then for any τ > 0

h̃(x, τ |x|2−n) |x|n lnσ1 |x| ≥ C |x|s+2+(2−n)(q−1) lnσ1+θ |x| = C lnσ1+θ |x| .

This means that b1) is fulfilled.
Since q > 1, there exists such σ2 > 0 that σ2(q − 1) > 1. Then

h̃(x, τ |x|2−n lnσ2 |x|)
τ |x|−n lnσ2 |x|

≥ C lnσ2(q−1)+θ |x| .

Due to the fact σ2(q − 1 + θ > 0, it is clear that b3) is fulfilled. Hence, there are
no positive solutions in this case either.

Let at last θ = −1. Since q > 1, there exists γ > 1 such that q − γ > 0. Then
for any τ > 0, α > 0, h̃(x, τ

∣∣x2−n∣∣ lnα |x|) |x|n ln−γα+1 ≥ C lnα(q−γ) |x| > 0. This
means that in this case, b2) is fulfilled. Similar to the previous one, it can be
shown that b3) is also fulfilled. So again, there are no positive solutions either.
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