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Abstract. In this article, we give an explicit expression for calculating the arbitrary
positive integer powers of the Kronecker sum of two tridiagonal Toeplitz matrices.
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1. Introduction

Let a tridiagonal Toeplitz matrix T of size n be given as:

T =


b a
c b a

. . .
. . .

. . .

c b a
c b

 , (1)

where a ̸= 0 and c ̸= 0. We denote the matrix M , the Kronecker sum of two
tridiagonal Toeplitz matrices T1 and T2 given by (1), by

M = T1 ⊕ T2. (2)

We find this type of matrices in a wide variety of applications, such as dis-
cretization problems of two-dimensional differential equations, including those
arising from the two-dimensional Poisson problem [2, 4]. We need to calculate
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the positive integer powers of this type of matrices for solving corresponding dif-
ference equations. Salkuyeh in [8] and Rimas in [5, 6, 7] gave an explicit expres-
sion for arbitrary positive integer powers of many types of tridiagonal Toeplitz
matrices.

In this paper, we present an expression for the positive integer powers of ma-
trix M given by (2) of arbitrary orders.

This paper is organized as follows. We start with the definitions and prop-
erties we need in our research in Section 2. In Section 3, an expression for the
positive integer powers of the Kronecker sum of two tridiagonal Toeplitz matrices
is derived. We give two numerical examples in Section 4.

2. Preliminaries

First, we mention the following definitions and lemma that we will be using
in this paper.

Definition 1 (Kronecker product). [1, 4] Let A and B be two matrices in Rn×n.
Then the n2 × n2 matrix

A⊗B =


a11B a12B ... a1nB
a21B a22B ... a2nB
: : :

an1B an2B . . . annB

 (3)

is the Kronecker product of A and B.

Definition 2 (Kronecker sum). [4] Let A and B be two matrices in Rn×n. We
denote by A⊕B the Kronecker sum of A and B defined as

A⊕B = (A⊗ I) + (I ⊗B),

where A⊕B is a matrix of order n2, and I denotes the identity matrix of order
n.

Property 1. [9, 10] Consider the matrices A,B,C and D with compatible sizes.

� (A⊗B)−1 = A−1 ⊗B−1, where A and B are invertible matrices,

� (αA)⊗ (βB) = αβ(A⊗B), for any scalars α and β,

� (AB)⊗ (CD) = (A⊗ C)(B ⊗D), (the mixed product rule).

Theorem 2. [4] Suppose for n ∈ N that A and B are two matrices in Rn×n

with eigenpairs (λi, ui), i = 1, ..., n and (µj , vj), j = 1, ..., n, respectively. And
M = A⊕B. Then (λi+µj , ui⊗vj) is an eigenpair of the matrix M , i, j = 1, ..., n.
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3. Main results

Let T1 and T2 be two tridiagonal Toeplitz matrices given by

T1 =


b1 a1
c1 b1 a1

. . .
. . .

. . .

c1 b1 a1
c1 b1

 ; T2 =


b2 a2
c2 b2 a2

. . .
. . .

. . .

c2 b2 a2
c2 b2

 ,

moreover, (λi, ui) and (µj , vj) be the eigenpairs of T1 and T2, respectively, such
as [2, 8]:

λi = b1 + 2a1

√
c1
a1

cos
iπ

n+ 1
, ui =



(
c1
a1

) 1
2
sin

(
1iπ

n+ 1

)
(

c1
a1

) 2
2
sin

(
2iπ

n+ 1

)
(

c1
a1

) 3
2
sin

(
3iπ

n+ 1

)
:(

c1
a1

)n
2
sin

(
niπ

n+ 1

)


, i = 1, 2, .., n, (4)

and

µj = b2 + 2a2

√
c2
a2

cos
jπ

n+ 1
, vj =



(
c2
a2

) 1
2
sin

(
1jπ

n+ 1

)
(

c2
a2

) 2
2
sin

(
2jπ

n+ 1

)
(

c2
a2

) 3
2
sin

(
3jπ

n+ 1

)
:(

c2
a2

)n
2
sin

(
njπ

n+ 1

)


, j = 1, 2, .., n. (5)

i.e., T1ui = λiui and T2vj = µjvj , moreover, the matrices T1 and T2 are diago-
nalizable, such that U = (u1 u2, ... un) and V = (v1 v2, ... vn) diagonalize T1

and T2, respectively, i.e.,

U−1T1U = D1 , V −1T2V = D2,

where D1 = diag(λ1 λ2 ... λn) and D2 = diag(µ1 µ2 ... µn), otherwise
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T1 = UD1U
−1 , T2 = V D2V

−1. (6)

Lemma 1. If T1 and T2 are two matrices of the form (6) and M = T1⊕T2, then

M = SDS−1,

with S = U ⊗ V and D = D1 ⊕D2.

Proof. See [3]. ◀

Now it is easy to computeMm via the formula SDmS−1, wherem is a positive
integer, because M is diagonalizable, and Dm is simply a diagonal matrix [3].

Hence, it is enough to find an explicit expression for S−1. Let

D̃1 =

((
c1
a1

) 1
2
(
c1
a1

) 2
2

...

(
c1
a1

)n
2

)
ũi =



sin

(
1iπ

n+ 1

)
sin

(
2iπ

n+ 1

)
sin

(
3iπ

n+ 1

)
:

sin

(
niπ

n+ 1

)


, i = 1, 2, .., n,

and

D̃2 =

((
c2
a2

) 1
2
(
c2
a2

) 2
2

...

(
c2
a2

)n
2

)
ṽj =



sin

(
1jπ

n+ 1

)
sin

(
2jπ

n+ 1

)
sin

(
3jπ

n+ 1

)
:

sin

(
njπ

n+ 1

)


, j = 1, 2, .., n.

Then we have: U = D̃1Ũ and V = D̃2Ṽ , where Ũ = (ũ1 ũ2, ... ũn) and Ṽ =
(ṽ1 ṽ2, ... ṽn).

Lemma 2. [8] Suppose Ũ and Ṽ are defined as above. Then

Ũ−1 =
2

n+ 1
Ũ , Ṽ −1 =

2

n+ 1
Ṽ .
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Therefore we have:

S−1 = (U ⊗ V )−1,

= U−1 ⊗ V −1,

= (D̃1Ũ)−1 ⊗ (D̃2Ṽ )−1,

= (Ũ−1D̃−1
1 )⊗ (Ṽ −1D̃−1

2 ),

=

(
2

n+ 1
ŨD̃−1

1

)
⊗
(

2

n+ 1
Ṽ D̃−1

2

)
,

=

(
2

n+ 1

)2

(ŨD̃−1
1 )⊗ (Ṽ D̃−1

2 ),

=
4

(n+ 1)2
(Ũ ⊗ Ṽ )(D̃−1

1 ⊗ D̃−1
2 ).

Theorem 3. Let M = T1 ⊕ T2 be the Kronecker sum of two tridiagonal Toeplitz
matrices defined in (1) and

Z = Mm =

Z11 ... Z1n

:
. . . :

Zn1 . . . Znn

 ,

where m is a positive integer. Then

Zi,j =
4

(n+ 1)2

(
c1
a1

) i− j

2 V

n∑
k=1

(λkI +D2)
m sin

(
kjπ

n+ 1

)
sin

(
ikπ

n+ 1

)
Ṽ D̃2 ;

zs,ti,j =
4

(n+ 1)2

(
c1
a1

) i− j

2
(
c2
a2

)s− t

2
n∑

k=1

n∑
l=1

(λk + µl)
m×

× sin

(
ikπ

n+ 1

)
sin

(
slπ

n+ 1

)
sin

(
kjπ

n+ 1

)
sin

(
ltπ

n+ 1

)
;

where λk = b1 +2a1
√
c1/a1 cos

(
kπ

n+ 1

)
and µl = b2 +2a2

√
c2/a2 cos

(
lπ

n+ 1

)
.

Proof.

Mm = SDmS−1,

=
4

(n+ 1)2
(U ⊗ V )(D1 ⊕D2)

m(Ũ ⊗ Ṽ )(D̃−1
1 ⊗ D̃−1

2 ).
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Now by replacing U, V, Ũ , and Ṽ in the last equation and a bit of math, the
desired formula is achieved. ◀

Remark 1. If M is a non-singular matrix (i.e., all the eigenvalues of M are
non-zero), then Theorem 3 can also be used for the negative integer m. We get
the inverse of the matrix M in the special case m = −1.

4. Examples

Example 1. Let

T1 =

0.5 0.1 0
0.2 0.5 0.1
0 0.2 0.5

 ; T2 =

 0.2 −0.1 0
−0.2 0.2 −0.1
0 −0.2 0.2

 .

Here, we have a1 = 0.1, b1 = 0.5, c1 = 0.2 and a2 = −0.1, b2 = 0.5, c2 = −0.2.
By using (4) and (5), we have λ1 = 0.3, λ2 = 0.5, λ3 = 0.7 and µ1 = 0, µ2 =
0.2, µ3 = 0.4 .

If M = T1 ⊕ T2 is given as

M =



0.7 −0.1 0 0.1 0 0 0 0 0
−0.2 0.7 −0.1 0 0.1 0 0 0 0

0 −0.2 0.7 0 0 0.1 0 0 0
0.2 0 0 0.7 −0.1 0 0.1 0 0
0 0.2 0 −0.2 0.7 −0.1 0 0.1 0
0 0 0.2 0 −0.2 0.7 0 0 0.1
0 0 0 0.2 0 0 0.7 −0.1 0
0 0 0 0 0.2 0 −0.2 0.7 −0.1
0 0 0 0 0 0.2 0 −0.2 0.7


,

and m = 10, then from the formula (3) we have

zs,ti,j = 2

i− j + s− t− 2

2
3∑

k=1

3∑
l=1

(λk+µl)
10 sin

(
ikπ

4

)
sin

(
slπ

4

)
sin

(
kjπ

4

)
sin

(
ltπ

4

)
where i, j, s, t = 1, 2, 3. We find:

M10 =



0.2601 −0.2056 0.0793 0.2056 −0.1586 0.0593 0.0793 −0.0593 0.0213
−0.4111 0.4187 −0.2056 −0.3172 0.3242 −0.1586 −0.1186 0.1219 −0.0593
0.3172 −0.4111 0.2601 0.2373 −0.3172 0.2056 0.0853 −0.1186 0.0793
0.4111 −0.3172 0.1186 0.4187 −0.3242 0.1219 0.2056 −0.1586 0.0593

−0.6343 0.6484 −0.3172 −0.6484 0.6626 −0.3242 −0.3172 0.3242 −0.1586
0.4746 −0.6343 0.4111 0.4877 −0.6484 0.4187 0.2373 −0.3172 0.2056
0.3172 −0.2373 0.0853 0.4111 −0.3172 0.1186 0.2601 −0.2056 0.0793

−0.4746 0.4877 −0.2373 −0.6343 0.6484 −0.3172 −0.4111 0.4187 −0.2056
0.3412 −0.4746 0.3172 0.4746 −0.6343 0.4111 0.3172 −0.4111 0.2601


.
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Example 2. Let

T1 =

 2 −1 0
−1 2 −1
0 −1 2

 ; T2 =

 2 −1 0
−2 2 −1
0 −2 2

 .

Here, we have a1 = −1, b1 = 2, c1 = −1 and a2 = −1, b2 = 2, c2 = −2. By
using (4) and (5), we have λ1 = 0.5858, λ2 = 2, λ3 = 3.4142 and µ1 = 0, µ2 =
2, µ3 = 4 .

If M = T1 ⊕ T2 is given as

M =



4 −1 0 −1 0 0 0 0 0
−2 4 −1 0 −1 0 0 0 0
0 −2 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0
0 −1 0 −2 4 −1 0 −1 0
0 0 −1 0 −2 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −2 4 −1
0 0 0 0 0 −1 0 −2 4


and the eigenvalues of M given as λi + µj , i, j = 1, 2, 3, are non-zero, then the
matrix M is non-singular.

For m = −1, from the formula (3) we have

zs,ti,j = 2

s− t− 2

2
3∑

k=1

3∑
l=1

1

λk + µl
sin

(
ikπ

4

)
sin

(
slπ

4

)
sin

(
kjπ

4

)
sin

(
ltπ

4

)
;

where i, j, s, t = 1, 2, 3. We find:

M−1 =



0.3643 0.1446 0.0482 0.1681 0.1176 0.0483 0.0727 0.0613 0.0274
0.2892 0.4608 0.1446 0.2353 0.2647 0.1176 0.1225 0.1275 0.0613
0.1929 0.2892 0.3643 0.1933 0.2353 0.1681 0.1096 0.1225 0.0727
0.1681 0.1176 0.0483 0.4370 0.2059 0.0756 0.1681 0.1176 0.0483
0.2353 0.2647 0.1176 0.4118 0.5882 0.2059 0.2353 0.2647 0.1176
0.1933 0.2353 0.1681 0.3025 0.4118 0.4370 0.1933 0.2353 0.1681
0.0727 0.0613 0.0274 0.1681 0.1176 0.0483 0.3643 0.1446 0.0482
0.1225 0.1275 0.0613 0.2353 0.2647 0.1176 0.2892 0.4608 0.1446
0.1096 0.1225 0.0727 0.1933 0.2353 0.1681 0.1929 0.2892 0.3643


.
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