Azerbaijan Journal of Mathematics V. 14, No 2, 2024, July ISSN 2218-6816 https://doi.org/10.59849/2218-6816.2024.2.54

Super and Strong γ H-Lindelöfness in Hereditary *m*-Spaces

A. Al-Omari^{*}, H. Al-Saadi, T. Noiri

Abstract. Let (X, m, \mathcal{H}) be a hereditary *m*-space and $\gamma : m \to P(X)$ be a γ -operation on *m*. A subset *A* of *X* is said to be $\gamma \mathcal{H}$ -Lindelöf relative to *X* [1] if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *A* by *m*-open sets of *X*, there exists a countable subset Δ_0 of Δ such that $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. In this paper, we define and investigate two kinds of strong forms of " $\gamma \mathcal{H}$ -Lindelöf relative to *X*".

Key Words and Phrases: hereditary *m*-space, $\gamma \mathcal{H}$ -Lindelöfness, strong $\gamma \mathcal{H}$ -Lindelöfness, super $\gamma \mathcal{H}$ -Lindelöfness.

2010 Mathematics Subject Classifications: 54D20, 54D30

1. Introduction

In 1991, Ogata [2] introduced the notions of γ -operations and γ -open sets in a topological space and investigated the associated topology τ_{γ} and weak separation axioms γ - T_i (i = 0, 1/2, 1, 2). In [3], a minimal structure and a minimal space (X, m) are introduced and investigated. In 2011, Noiri [4] defined an $m\gamma$ -operation on an m-structure with property \mathcal{B} (the generalized topology in the sense of Lugojan [5]). Császár [6] introduced the notion of hereditary classes as a generalization of ideals. Let (X, m, \mathcal{H}) be a hereditary m-space and $\gamma : m \to P(X)$ be an operation on m. A subset A of X is said to be $\gamma\mathcal{H}$ -Lindelöf relative to to X (resp. γ -Lindelöf relative to X) [1] if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of A by m-open sets of X, there exists a countable subset Δ_0 of Δ such that $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ (resp. $A \subseteq \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$).

In this paper, we define a subset A of a hereditary m-space (X, m, \mathcal{H}) to be super $\gamma \mathcal{H}$ -Lindelöf relative to X if for every family $\{U_{\alpha} : \alpha \in \Delta\}$ of m-open sets of X such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a countable subset Δ_0

http://www.azjm.org

54

© 2010 AZJM All rights reserved.

^{*}Corresponding author.

of Δ such that $A \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Similarly, we define a subset called strongly $\gamma \mathcal{H}$ -Lindelöf relative to X and investigate their properties. Also, papers [7, 8, 9] have introduced some properties related to minimal spaces with hereditary classes.

2. Preliminaries

Definition 1. A subfamily m of the power set $\mathcal{P}(X)$ of a nonempty set X is called a *minimal structure* (briefly *m-structure*) [3] on X if m satisfies the following conditions:

- (1) $\emptyset \in m$ and $X \in m$,
- (2) The union of any family of subsets belonging to m belongs to m.

A set X with an *m*-structure *m* on X is denoted by (X, m) and is called an *m*-space. Each member of *m* is said to be *m*-open and the complement of an *m*-open set is said to be *m*-closed. In this paper, the *m*-structure [3] having property \mathcal{B} is briefly called the *m*-structure.

Definition 2. Let (X, m) be an *m*-space and *A* be a subset of *X*. The *m*-closure mCl(A) and the *m*-interior mInt(A) of *A* [10] are defined as follows:

- (1) $\operatorname{mCl}(A) = \cap \{F \subset X : A \subset F, X \setminus F \in m\},\$
- (2) $\operatorname{mInt}(A) = \bigcup \{ U \subset X : U \subset A, U \in m \}.$

Lemma 1. [3]. Let (X, m) be an m-space and A be a subset of X. (1) $x \in \mathrm{mCl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m(x)$. (2) A is m-closed if and only if $\mathrm{mCl}(A) = A$.

Definition 3. A nonempty subfamily \mathcal{H} of $\mathcal{P}(X)$ is called a *hereditary class* on X [6] if it satisfies the following properties: $A \in \mathcal{H}$ and $B \subset A$ implies $B \in \mathcal{H}$. A hereditary class \mathcal{H} is called an *ideal* [11], [12] if it satisfies the additional condition: $A \in \mathcal{H}$ and $B \in \mathcal{H}$ implies $A \cup B \in \mathcal{H}$.

A minimal space (X, m) with a hereditary class \mathcal{H} on X is called a *hereditary* minimal space (briefly *hereditary* m-space) and is denoted by (X, m, \mathcal{H}) . The notion of ideals has been introduced in [11] and [12] and further investigated in [13].

Definition 4. Let (X, m) be an *m*-space. Let $m\gamma : m \to P(X)$ be a function from *m* into P(X) such that $U \subset m\gamma(U)$ for each $U \in m$. The function $m\gamma$ is called an $m\gamma$ -operation on *m* [4] and the image $m\gamma(U)$ is simply denoted by $\gamma(U)$. In this paper, an $m\gamma$ -operation is simply called a γ -operation. **Definition 5.** Let (X,m) be an *m*-space and $\gamma : m \to P(X)$ be a γ -operation. A subset *A* of *X* is said to be γ -open [4] if for each $x \in A$ there exists $U \in m$ such that $x \in U \subset \gamma(U) \subset A$. The complement of a γ -open set is said to be γ -closed. The family of all γ -open sets of (X,m) is denoted by $\gamma(X)$. The γ -closure of *A*, $\gamma \operatorname{Cl}(A)$, is defined as follows: $\gamma \operatorname{Cl}(A) = \cap \{F \subset X : A \subset F, X \setminus F \in \gamma(X)\}.$

Definition 6. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. A subset *A* of *X* is said to be $\gamma \mathcal{H}$ -Lindelöf relative to *X* [1] (resp. γ -Lindelöf relative to *X*) if for each cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *A* by *m*-open sets of *X*, there exists a countable subset Δ_0 of Δ such that $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ (resp. $A \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$.

Definition 7. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. The space (X, m, \mathcal{H}) is said to be $\gamma \mathcal{H}$ -Lindelöf [1] (resp. γ -Lindelöf) if X is $\gamma \mathcal{H}$ -Lindelöf relative to X (resp. γ -Lindelöf relative to X).

3. Super $\gamma \mathcal{H}$ -Lindelöf spaces

Definition 8. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*.

(1) A subset A of X is said to be super $\gamma \mathcal{H}$ -Lindelöf relative to X if for every family $\{U_{\alpha} : \alpha \in \Delta\}$ of m-open sets of X such that $A \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a countable subset Δ_0 of Δ such that $A \subset \cup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$.

(2) $(X, m \mathcal{H})$ is called a *super* $\gamma \mathcal{H}$ -*Lindelöf space* if X is super $\gamma \mathcal{H}$ -Lindelöf relative to X.

Remark 1. Let (X, m, \mathcal{H}) be a hereditary *m*-space. If $\mathcal{H} = \{\emptyset\}$, then "super $\gamma \mathcal{H}$ -Lindelöf relative to X" coincides with " γ -Lindelöf relative to X".

Theorem 1. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. For a subset *A* of *X*, the following properties are equivalent:

(1) A is super $\gamma \mathcal{H}$ -Lindelöf relative to X;

(2) for every family $\{F_{\alpha} : \alpha \in \Delta\}$ of *m*-closed sets of *X* such that $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$, there exists a countable subset Δ_0 of Δ such that $A \cap (\cap \{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\}) = \emptyset$.

Proof. (1) \Rightarrow (2): Let $\{F_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-closed sets of X such that $A \cap (\bigcap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$. Then, we have $A \setminus (\bigcup \{X \setminus F_{\alpha} : \alpha \in \Delta\}) = A \setminus (X \setminus \bigcap \{F_{\alpha} : \alpha \in \Delta\}) = A \cap (\bigcap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$. Since $X \setminus F_{\alpha}$ is *m*-open for each $\alpha \in \Delta$, by (1) there exists a countable subset Δ_0 of Δ such that $A \subseteq \bigcup \{\gamma(X \setminus F_{\alpha}) : \alpha \in \Delta_0\}$. Therefore, we have

$$A \cap [X \setminus (\cup \{\gamma(X \setminus F_{\alpha}) : \alpha \in \Delta_0\})] = A \cap (\cap \{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\}) = \emptyset.$$

 $(2) \Rightarrow (1): \text{ Let } \{U_{\alpha} : \alpha \in \Delta\} \text{ be any family of } m\text{-open sets of } X \text{ such that } A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}. \text{ Then } \{X \setminus U_{\alpha} : \alpha \in \Delta\} \text{ is a family of } m\text{-closed sets such that } A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} = A \cap (X \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) \text{ and hence } A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}. \text{ By } (2), \text{ there exists a countable subset } \Delta_0 \text{ of } \Delta \text{ such that } A \cap (\cap \{[X \setminus \gamma(X \setminus (X \setminus U_{\alpha}))] : \alpha \in \Delta_0\}) = A \cap (\cap \{[X \setminus \gamma(U_{\alpha})] : \alpha \in \Delta_0\}) = \emptyset. \text{ Therefore, } A \cap (X \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}) = \emptyset \text{ and hence } A \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}. \text{ This shows that } A \text{ is super } \gamma \mathcal{H}\text{-Lindelöf relative to } X. \blacktriangleleft$

Corollary 1. Let (X, m, \mathcal{H}) be a hereditary m-space and γ be a γ -operation on m. Then, the following properties are equivalent:

(1) (X, m, \mathcal{H}) is super $\gamma \mathcal{H}$ -Lindelöf;

(2) for every family $\{F_{\alpha} : \alpha \in \Delta\}$ of *m*-closed sets of *X* such that $\cap\{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a countable subset Δ_0 of Δ such that $\cap\{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\} = \emptyset$.

Definition 9. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. A subset *A* of *X* is said to be $\mathcal{H}\gamma g$ -closed if $\gamma \operatorname{Cl}(A) \subset U$ whenever $A \setminus U \in \mathcal{H}$ and *U* is *m*-open.

Theorem 2. Let (X, m, \mathcal{H}) be a hereditary m-space, γ be a γ -operation on m and A, B be subsets of X such that $A \subset B \subset \gamma \operatorname{Cl}(A)$ and A is $\mathcal{H}\gamma g$ -closed. Then the following properties hold:

(1) if $\gamma Cl(A)$ is γ -Lindelöf relative to X, then B is super $\gamma \mathcal{H}$ -Lindelöf relative to X,

(2) if B is γ -Lindelöf relative to X, then A is super $\gamma \mathcal{H}$ -Lindelöf relative to X.

Proof. (1): Suppose that $\gamma \operatorname{Cl}(A)$ is γ -Lindelöf relative to X. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of X such that $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Then $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since A is $\mathcal{H}\gamma g$ -closed, $\gamma \operatorname{Cl}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$. Since $\gamma \operatorname{Cl}(A)$ is γ -Lindelöf relative to X, there exists a countable subset Δ_0 of Δ such that $\gamma \operatorname{Cl}(A) \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Since $B \subset \gamma \operatorname{Cl}(A)$, we have $B \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Therefore, B is super $\gamma \mathcal{H}$ -Lindelöf relative to X.

(2): Suppose that B is γ -Lindelöf relative to X. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of m-open sets in X such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since A is $\mathcal{H}\gamma g$ -closed, $\gamma \operatorname{Cl}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$. Hence, we have $B \subset \gamma \operatorname{Cl}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$. Since B is γ -Lindelöf relative to X, there exists a countable subset Δ_0 of Δ such that $B \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Since $A \subset B, A \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Therefore, A is super $\gamma \mathcal{H}$ -Lindelöf relative to X.

Theorem 3. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. If subsets *A* and *B* of *X* are super $\gamma \mathcal{H}$ -Lindelöf relative to *X*, then $A \cup B$ is super $\gamma \mathcal{H}$ -Lindelöf relative to *X*.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $(A \cup B) \setminus \bigcup \{U_{\alpha} \in \Delta\} \in \mathcal{H}$. Then, we have $A \setminus \bigcup \{U_{\alpha} \in \Delta\} \in \mathcal{H}$ and $B \setminus \bigcup \{U_{\alpha} \in \Delta\} \in \mathcal{H}$. Since *A* and *B* are super $\gamma \mathcal{H}$ -Lindelöf relative to *X*, there exist countable subsets Δ_A and Δ_B of Δ such that $A \subset \bigcup \{\gamma \operatorname{Cl}(U_{\alpha}) : \alpha \in \Delta_A\}$ and $B \subset \bigcup \{\gamma \operatorname{Cl}(U_{\alpha}) : \alpha \in \Delta_B\}$. Hence we have $A \cup B \subset \bigcup \{\gamma \operatorname{Cl}(U_{\alpha}) : \alpha \in \Delta_A \cup \Delta_B\}$. $\Delta_A \cup \Delta_B$ is a countable subset of Δ . Therefore, $A \cup B$ is super $\gamma \mathcal{H}$ -Lindelöf relative to *X*.

Theorem 4. Let (X, m, \mathcal{H}) be a hereditary *m*-space, γ be a γ -operation on *m* and *A*, *B* be subsets of *X*. If *A* is super $\gamma \mathcal{H}$ -Lindelöf relative to *X* and *B* is γ -closed, then $A \cap B$ is super $\gamma \mathcal{H}$ -Lindelöf relative to *X*.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a family of *m*-open sets of *X* such that $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since *B* is γ -closed, $X \setminus B$ is γ -open and for each $x \in X \setminus B$, there exists $V_x \in m$ such that $x \in V_x \subset \gamma(V_x) \subset X \setminus B$. Hence $\{U_{\alpha} : \alpha \in \Delta\} \cup [\bigcup \{V_x : x \in X \setminus B\}]$ is a family of *m*-open sets of *X*. $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\}$ $= A \setminus [(X \setminus B) \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] = A \setminus [(\bigcup \{V_x : x \in X \setminus B\}) \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] \in \mathcal{H}$. Since *A* is super $\gamma \mathcal{H}$ -Lindelöf relative to *X*, there exist countable subset Δ_0 of Δ and countable points $x_1, x_2, ..., x_n, ...$ in $X \setminus B$ such that $A \subset [(\bigcup \{\gamma(V_{x_i}) : i = 1, 2, ..., n, ...\}) \cup (\bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\})]$. Since $B \cap \gamma(V_{x_i}) = \emptyset$ for each x_i $(i = 1, 2, ..., n, ...), A \cap B \subset [\bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}] \cap B \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Therefore, $A \cap B$ is super $\gamma \mathcal{H}$ -Lindelöf relative to *X*.

Corollary 2. If a hereditary m-space (X, m, \mathcal{H}) is super $\gamma \mathcal{H}$ -Lindelöf and B is γ -closed, then B is super $\gamma \mathcal{H}$ -Lindelöf relative to X.

Definition 10. A function $f : (X,m) \to (Y,n)$ is said to be (γ, δ) -closed if for each $y \in Y$ and $U \in m$ containing $f^{-1}(y)$, there exists $V \in n$ containing y such that $f^{-1}(\delta(V)) \subseteq \gamma(U)$.

Definition 11. Let (X, m, \mathcal{H}) be a hereditary *m*-space.

(1) A subset A of X is said to be super \mathcal{H} -Lindelöf relative to X if for every family $\{U_{\alpha} : \alpha \in \Delta\}$ of m-open sets of X such that $A \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a countable subset Δ_0 of Δ such that $A \subset \cup \{U_{\alpha} : \alpha \in \Delta_0\}$.

(2) $(X, m \mathcal{H})$ is called a super \mathcal{H} -Lindelöf space if X is super \mathcal{H} -Lindelöf relative to X.

An *m*-structure *m* is said to have countable additive property for an operation $\gamma : m \to \mathcal{P}(X)$ if $\gamma(\cup \{V_{\alpha} : \alpha \in \Delta\}) = \cup \{\gamma(V_{\alpha}) : \alpha \in \Delta\}$ for $V_{\alpha} \in m$ and a countable set Δ .

Theorem 5. Let $f : (X, m) \to (Y, n, \mathcal{H})$ be a (γ, δ) -closed surjective function such that m has countable additive property. If $f^{-1}(y)$ is super \mathcal{H} -Lindelöf relative to X for each $y \in Y$ and B is δ -Lindelöf relative to Y, then $f^{-1}(B)$ is super $\gamma f^{-1}(\mathcal{H})$ -Lindelöf relative to X.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $f^{-1}(B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in f^{-1}(\mathcal{H})$. Then for each $y \in B$, since $f^{-1}(y)$ is super \mathcal{H} -Lindelöf relative to *X*, there exists a countable subset $\Delta(y)$ of Δ such that $f^{-1}(y) \subseteq \bigcup \{U_{\alpha} : \alpha \in \Delta(y)\} = U_y$. Since U_y is an *m*-open set of *X* containing $f^{-1}(y)$ and *f* is (γ, δ) -closed, there exists an *n*-open set V_y containing *y* such that $f^{-1}(\delta(V_y)) \subseteq \gamma(U_y)$. Since $\{V_y : y \in B\}$ is an *n*-open cover of *B* and *B* is δ -Lindelöf relative to *Y*, there exists a countable subset B_0 of *B* such that $B \subseteq \bigcup \{\delta(V_y) : y \in B_0\}$. Hence we have

$$f^{-1}(B) \subseteq \bigcup \{ f^{-1}(\delta(V_y)) : y \in B_0 \} \subseteq \bigcup \{ \gamma(U_y) : y \in B_0 \}$$
$$\subseteq \bigcup \{ \gamma(U_\alpha) : \alpha \in \Delta(y), y \in B_0 \}.$$

We obtain $f^{-1}(B) \subseteq \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta(y), y \in B_0\}$. This shows that $f^{-1}(B)$ is super $\gamma f^{-1}(\mathcal{H})$ -Lindelöf relative to Y.

Corollary 3. Let $f : (X,m) \to (Y,n,\mathcal{H})$ be a (γ,δ) -closed surjective function such that m has a countable additive property. If $f^{-1}(y)$ is super \mathcal{H} -Lindelöf relative to X for each $y \in Y$ and B is super $\delta \mathcal{H}$ -Lindelöf relative to Y, then $f^{-1}(B)$ is super $\gamma f^{-1}(\mathcal{H})$ -Lindelöf relative to X.

Corollary 4. Let $f : (X,m) \to (Y,n,\mathcal{H})$ be a (γ,δ) -closed surjective function such that m has a countable additive property. If $f^{-1}(y)$ is super \mathcal{H} -Lindelöf relative to X for each $y \in Y$ and Y is δ -Lindelöf, then X is super $\gamma f^{-1}(\mathcal{H})$ -Lindelöf.

4. Strongly $\gamma \mathcal{H}$ -Lindelöf spaces

Definition 12. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*.

(1) A subset A of X is said to be strongly $\gamma \mathcal{H}$ -Lindelöf relative to X if for every family $\{U_{\alpha} : \alpha \in \Delta\}$ of m-open sets of X such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a countable subset Δ_0 of Δ such that $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ 60 Н.

(2) (X, m, \mathcal{H}) is said to be strongly $\gamma \mathcal{H}$ -Lindelöf if X is strongly $\gamma \mathcal{H}$ -Lindelöf relative to X.

Theorem 6. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. For a subset *A* of *X*, the following properties are equivalent:

(1) A is strongly $\gamma \mathcal{H}$ -Lindelöf relative to X;

(2) for every family $\{F_{\alpha} : \alpha \in \Delta\}$ of *m*-closed sets of *X* such that $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$, there exists a countable subset Δ_0 of Δ such that $A \cap (\cap \{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\}) \in \mathcal{H}$.

Proof. (1) \Rightarrow (2): Let $\{F_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-closed sets of *X* such that $A \cap (\cap\{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$. Then $A \setminus \cup\{X \setminus F_{\alpha} : \alpha \in \Delta\}) = A \setminus (X \setminus \cap\{F_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap\{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$. Since $X \setminus F_{\alpha}$ is *m*-open for each $\alpha \in \Delta$ and *A* is strongly $\gamma \mathcal{H}$ -Lindelöf relative to *X*, by (1) there exists a countable subset Δ_0 of Δ such that $A \setminus \cup\{\gamma(X \setminus F_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. This implies that $A \cap (\cap\{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\}) = A \setminus (X \setminus (\cap\{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\}) = A \setminus (X \setminus (\cap\{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\})) = A \setminus \cup\{\gamma(X \setminus F_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$.

 $(2) \Rightarrow (1)$: Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a family of *m*-open sets of *X* such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Then $\{X \setminus U_{\alpha} : \alpha \in \Delta\}$ is a family of *m*-closed sets of *X* and also $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} = A \cap (X \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$. Thus, by (2) there exists a countable subset Δ_0 of Δ such that $A \cap (\cap \{X \setminus \gamma(U_{\alpha}) : \alpha \in \Delta_0\}) \in \mathcal{H}$. Therefore, we have $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} = A \cap (X \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}) = A \cap (\cap \{X \setminus \gamma(U_{\alpha}) : \alpha \in \Delta_0\}) = A \cap (\cap \{X \setminus \gamma(U_{\alpha}) : \alpha \in \Delta_0\}) \in \mathcal{H}$. This shows that *A* is strongly $\gamma \mathcal{H}$ -Lindelöf relative to *X*.

Corollary 5. For a hereditary m-space (X, m, \mathcal{H}) , the following properties are equivalent, where γ is a γ -operation on m:

(1) (X, m, \mathcal{H}) is strongly $\gamma \mathcal{H}$ -Lindelöf;

(2) for every family $\{F_{\alpha} : \alpha \in \Delta\}$ of *m*-closed sets of *X* such that $\cap \{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a countable subset Δ_0 of Δ such that $\cap \{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\} \in \mathcal{H}$.

Theorem 7. Let (X, m, \mathcal{H}) be a hereditary *m*-space, γ be a γ -operation on *m* and *A*, *B* be subsets of *X* such that *A* is $\mathcal{H}\gamma g$ -closed and $A \subset B \subset \gamma \operatorname{Cl}(A)$. Then the following properties hold:

(1) if $\gamma Cl(A)$ is $\gamma \mathcal{H}$ -Lindelöf relative to X, then B is strongly $\gamma \mathcal{H}$ -Lindelöf relative to X,

(2) if B is $\gamma \mathcal{H}$ -Lindelöf relative to X, then A is strongly $\gamma \mathcal{H}$ -Lindelöf relative to X.

Proof. (1): Suppose that $\gamma \operatorname{Cl}(A)$ is $\gamma \mathcal{H}$ -Lindelöf relative to X. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of m-open sets of X such that $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Then $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ and $\bigcup \{U_{\alpha} : \alpha \in \Delta\} \in m$. Since A is $\mathcal{H}mg$ -closed, $\gamma \operatorname{Cl}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$. Since $\gamma \operatorname{Cl}(A)$ is $\gamma \mathcal{H}$ -Lindelöf relative to X, there exists a countable subset Δ_0 of Δ such that $\gamma \operatorname{Cl}(A) \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ and hence $B \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. Therefore, B is strongly $\gamma \mathcal{H}$ -Lindelöf relative to X.

(2): Suppose that *B* is $\gamma \mathcal{H}$ -Lindelöf relative to *X*. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since *A* is $\mathcal{H}mg$ -closed, we have $B \subset \gamma \operatorname{Cl}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$. Since *B* is $\gamma \mathcal{H}$ -Lindelöf relative to *X*, there exists a countable subset Δ_0 of Δ such that $B \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. Since $A \subset B, A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. Hence, *A* is strongly $\gamma \mathcal{H}$ -Lindelöf relative to *X*.

Theorem 8. Let (X, m, \mathcal{H}) be an ideal *m*-space and γ be a γ -operation on *m*. If the subsets *A* and *B* of *X* are strongly $\gamma \mathcal{H}$ -Lindelöf relative to *X*, then $A \cup B$ is strongly $\gamma \mathcal{H}$ -Lindelöf relative to *X*.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $(A \cup B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Then $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ and $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ and $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since *A* and *B* are strongly $\gamma \mathcal{H}$ -Lindelöf relative to *X*, there exist countable subsets Δ_A and Δ_B of Δ and subsets H_A and H_B of \mathcal{H} such that $A \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_A\} \cup H_A$ and $B \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_B\} \cup H_B$. Hence we have $(A \cup B) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_A \cup \Delta_B\} \cup (H_A \cup H_B)$. Since \mathcal{H} is an ideal, we have $(A \cup B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_A \cup \Delta_B\} \in \mathcal{H}$. This shows that $A \cup B$ is strongly $\gamma \mathcal{H}$ -Lindelöf relative to *X*.

Theorem 9. Let (X, m, \mathcal{H}) be a hereditary m-space, γ be a γ -operation on m and A, B be subsets of X. If A is strongly $\gamma \mathcal{H}$ -Lindelöf relative to X and B is γ -closed, then $A \cap B$ is strongly $\gamma \mathcal{H}$ -Lindelöf relative to X.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since *B* is γ -closed, $X \setminus B$ is γ -open and for each $x \in X \setminus B$, there exists $V_x \in m$ such that $x \in V_x \subset \gamma(V_x) \subset X \setminus B$. Hence $\{U_{\alpha} : \alpha \in \Delta\} \cup [\bigcup \{V_x : x \in X \setminus B\}]$ is a family of *m*-open sets of *X*. $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} = A \setminus [(X \setminus B) \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] = A \setminus [\bigcup \{V_x : x \in X \setminus B\}] \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] \in \mathcal{H}$. Since *A* is strongly $\gamma \mathcal{H}$ -Lindelöf relative to *X*, there exist countable subset Δ_0 of Δ and countable points $x_1, x_2, ..., x_n, ...$ in $X \setminus B$ such that $A \setminus [\bigcup \{\gamma(V_{x_i}) : i = 1, 2, ..., n, ...\} \cup (\bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\})] \in \mathcal{H}$. Since $B \cap \gamma(V_{x_i}) = \emptyset$ for each x_i $(i = 1, 2, ..., n), A \cap B \setminus [\bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}] \in \mathcal{H}$. Therefore, $A \cap B$ is strongly $\gamma \mathcal{H}$ -Lindelöf relative to *X*. **Corollary 6.** If a hereditary m-space (X, m, \mathcal{H}) is strongly $\gamma \mathcal{H}$ -Lindelöf and B is γ -closed, then B is strongly $\gamma \mathcal{H}$ -Lindelöf relative to X.

Theorem 10. Let $f : (X, m) \to (Y, n, \mathcal{H})$ be a (γ, δ) -closed surjective function such that m has a countable additive property. If $f^{-1}(y)$ is super \mathcal{H} -Lindelöf relative to X for each $y \in Y$ and B is $\delta \mathcal{H}$ -Lindelöf relative to Y, then $f^{-1}(B)$ is strongly $\gamma f^{-1}(\mathcal{H})$ -Lindelöf relative to X.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $f^{-1}(B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in f^{-1}(\mathcal{H})$. Then for each $y \in B$, since $f^{-1}(y)$ is super \mathcal{H} -Lindelöf relative to *X*, there exists a countable subset $\Delta(y)$ of Δ such that $f^{-1}(y) \subseteq \bigcup \{U_{\alpha} : \alpha \in \Delta(y)\} = U_y$. Since U_y is an *m*-open set of *X* containing $f^{-1}(y)$ and *f* is (γ, δ) -closed, there exists an *n*-open set V_y containing *y* such that $f^{-1}(\delta(V_y)) \subseteq \gamma(U_y)$. Since $\{V_y : y \in B\}$ is an *n*-open cover of *B* and *B* is $\delta\mathcal{H}$ -Lindelöf relative to *Y*, there exists a countable subset B_0 of *B* such that $B \setminus \bigcup \{\delta(V_y) : y \in B_0\} \in \mathcal{H}$. Therefore, $B \subseteq \bigcup \{\delta(V_y) : y \in B_0\} \cup H_0$, where $H_0 \in \mathcal{H}$. Hence we have

$$f^{-1}(B) \subseteq \bigcup \{f^{-1}(\delta(V_y)) : y \in B_0\} \cup f^{-1}(H_0)$$
$$\subseteq \bigcup \{\gamma(U_y) : y \in B_0\} \cup f^{-1}(H_0)$$
$$\subseteq \bigcup \{\gamma(U_\alpha) : \alpha \in \Delta(y), y \in B_0\} \cup f^{-1}(H_0)$$

We obtain $f^{-1}(B) \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta(y), y \in B_0\} \in f^{-1}(\mathcal{H})$. This shows that $f^{-1}(B)$ is strongly $\gamma f^{-1}(\mathcal{H})$ -Lindelöf relative to Y.

Corollary 7. Let $f : (X,m) \to (Y,n,\mathcal{H})$ be a (γ,δ) -closed surjective function such that m has a countable additive property. If $f^{-1}(y)$ is super \mathcal{H} -Lindelöf relative to X for each $y \in Y$ and B is strongly $\delta \mathcal{H}$ -Lindelöf relative to Y, then $f^{-1}(B)$ is strongly $\gamma f^{-1}(\mathcal{H})$ -Lindelöf relative to X.

Corollary 8. Let $f : (X,m) \to (Y,n,\mathcal{H})$ be a (γ,δ) -closed surjective function such that m has a countable additive property. If $f^{-1}(y)$ is super \mathcal{H} -Lindelöf relative to X for each $y \in Y$ and Y is $\delta \mathcal{H}$ -Lindelöf, then X is strongly $\gamma f^{-1}(\mathcal{H})$ -Lindelöf.

Remark 2. We have the following relationships:

super $\gamma \mathcal{H}$ -Lindelöf relative to $X \Rightarrow$ strongly $\gamma \mathcal{H}$ -Lindelöf relative to X \Downarrow γ -Lindelöf relative to $X \Rightarrow \gamma \mathcal{H}$ -Lindelöf relative to X. **Remark 3.** The following examples show that " γ -Lindelöf relative to X" and "strongly $\gamma \mathcal{H}$ -Lindelöf relative to X" are independent of each other. Therefore, the converse of the above four implications is not necessarily true.

Example 1. Let $X = [0, \infty)$, $m = \{X, (a, \infty) : a \ge 0\} \cup \{\emptyset\}$ be an *m*-structure, $\mathcal{H} = \mathcal{H}_f$ the hereditary classes of all finite subsets of X and γ be a γ -operation on *m* such that $\gamma(U) = id(U) = U$ for each $U \in m$. Then

- (1) (X, m, \mathcal{H}) is γ -Lindelöf relative to X. To prove this, let $\{V_{\alpha} : \alpha \in \Delta\}$ be any *m*-open cover of X. Then there exists $\alpha_0 \in \Delta$ with $V_{\alpha_0} = X$, and so there exists a countable subset Δ_0 of Δ such that $X \subseteq \bigcup \{\gamma(V_{\alpha}) : \alpha \in \Delta_0\}$.
- (2) (X, m, \mathcal{H}) is not strongly γ -Lindelöf relative to X, because $X \setminus \bigcup \{(a, \infty) : a > 0\} = \{0\} \in \mathcal{H}_f$. But if we consider the increasing sequence $\{a_i : a_1 > 0, i \in \mathbb{Z}^+\}$, then $X \setminus \bigcup \{\gamma(a_i, \infty) : i \in \mathbb{Z}^+\} = X \setminus \bigcup \{(a_i, \infty) : i \in \mathbb{Z}^+\} = X \setminus (a_1, \infty) = [0, a_1] \notin \mathcal{H}_f$.

Example 2. Let $X = \mathbb{R} \times \mathbb{R}^+$. For $(x, y) \in X$ and r > 0, let

$$N_r(x,y) = \begin{cases} B_r(x,y) & \text{if } r \le y; \\ B_r(x,r) \cup \{(x,0)\} \cup B_r(0,r), & \text{if } y = 0. \end{cases}$$

We take $\{N_r(x, y)\}$ as a basis for the topology on X which is an m-structure and let $\mathcal{H} = \mathcal{P}(X)$ be the hereditary classes and γ be a γ -operation on m such that $\gamma(U) = id(U) = U$ for each $U \in m$, then

(1) (X, m, \mathcal{H}) is not γ -Lindelöf relative to X, because $\{N_1(x, 0)\} \cup \{N_1(x, y) : y \geq 1\}$ is an m-open cover of X. Since $(z, 0) \notin \{N_1(x, y) : y \geq 1\}$ and $(z, 0) \in \{N_1(x, 0)\}$ if and only if x = z, the above m-open cover has no countable subcover. Thus, X is not γ -Lindelöf.

(2) (X, m, \mathcal{H}) is strongly γ -Lindelöf relative to X, since $\mathcal{H} = \mathcal{P}(X)$.

References

- A. Al-Omari, T. Noiri, Generalizations of Lindelof spaces via a hereditary classes, Acta Univ. Sapientiae Math., 13(2), 2021, 281-291.
- [2] H. Ogata, Operations on topological spaces and associated topology, Math. Japan., 36, 1991, 175-184.
- [3] V. Popa, T. Noiri, On M-continuous functions, An. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., 43(23), 2000, 31–41.
- [4] T. Noiri, A unified theory for generalizations of compact spaces, Anal. Univ. Sci. Budapest., 54, 2011, 79–96.

- [5] S. Lugojan, *Generalized topology*, Stud. Cerc, Mat., **34**, 1982, 348-360.
- [6] A. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2), 2007, 29-35.
- [7] A. Al-Omari, S. Modak, T. Noiri, On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc., 31(4), 2016, 857-868.
- [8] A. Al-Omari, T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61(84)(2), 2019, 101-110.
- [9] A. Al-Omari, T. Noiri, Properties of γH -compact spaces with hereditary classes, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, **98(2)**, 2020, 1-11.
- [10] H. Maki, K.C. Rao, A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49, 1999, 17–29.
- [11] K. Kuratowski, Topology, I, Academic Press, New York, 1966.
- [12] R. Vaidyanathaswani, The localization theory in set-topology, Proc. Indian Acad. Sci., 20, 1945, 51–62.
- [13] D. Janković, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4), 1990, 295–310.

Ahmad Al-Omari Al al-Bayt University, Faculty of Sciences, Department of Mathematics, P.O. Box 130095, Mafraq 25113, Jordan E-mail: omarimutah1@yahoo.com

Hanan Al-Saadi Umm Al-Qura University, Faculty of Applied Sciences, Department of Mathematics, P.O. Box 11155, Makkah 21955, Saudi Arabia E-mail: Hsssaadi@uqu.edu.sa

Takashi Noiri 949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan *E-mail:* t.noiri@nifty.com

Received 15 July 2023 Accepted 30 September 2023