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Maximal-simultaneous Approximation Properties
of Faber Series in Weighted Bergman Space
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Abstract. In this work, maximal-simultaneous approximation properties of generalized
Faber series in weighted Bergman space, defined on bounded continuums of the complex
plane, are studied. The error of this approximation in dependence of the best approxi-
mation number and the parameters of considered canonical domains is estimated.
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1. Introduction

Let M be a bounded continuum with more than one point in the complex
plane C, Mc:=C\M be its connected complement, and D := {w : |w| < 1}. By
w = φ (z) we denote the Riemann conformal mapping of Mc onto D

c
:= C\D

with the normalization φ (∞) = ∞, φ
′
(∞) > 0. Let also z = ψ(w) be the inverse

mapping of φ.
For an arbitrary fixed number R > 1 we set

LR := {z : |φ (z)| = R} , MR := intLR := {z : z ∈ Mc and |φ (z)| < R} ∪M.

Let g be an analytic function in Mc, and g (∞) > 0. Then, the generalized
Faber polynomials Fk (z, g) , k = 0, 1, 2, ..., forM can be defined as the coefficients
of the series expansion

wg [ψ(w)]ψ
′
(w)

ψ(w)− z
=

∞∑
k=0

Fk (z, g)

wk
, z ∈ M, |w| > 1. (1)
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It is also known that this series converges uniformly and absolutely on the com-
pact subsets of D

c
x M.

If we differentiate the series (1) m + 1 times, m ∈ N:={0, 1, 2, 3, ...} , with
respect to the variable z, then we have the series representation

(m+ 1)!wg [ψ(w)]ψ
′
(w)

[ψ(w)− z]m+2 =
∞∑

k=m+1

F
(m+1)
k (z, g)

wk
, (2)

which also converges uniformly and absolutely on the compact subsets of D
c
x

M.
Let G ⊂ C be a simply connected bounded domain and ω be a weight function

defined on G. Then we can define the Bergman space Ap (G,ω) , 1 ≤ p < ∞, of
analytic functions f in G, equipped with the norm

∥f∥Ap(G,ω) :=

∫∫
G

|f (z)|p ω (z) dσ(z)

1/p

<∞,

where dσ(z) = dxdy is the 2-dimensional Lebesgue measure on G. When ω (z) =
1, we denote Ap (G) := Ap (G, 1) and A (G) := A1 (G). Note that Ap (G,ω) ,
1 ≤ p <∞, is a Banach space.

As is known, Faber polynomials and their different generalizations in the ap-
proximation theory have been used for construction of approximation aggregates
(see, for example, [25, 26, 11, 3, 12, 13, 14, 15, 16, 2, 1, 4, 18, 20, 17, 21, 22, 27]).
These polynomials can be also used for solution of different boundary value and
basicity problems on domains of the complex plane (see, for example, [7, 8, 24]).
Note that fundamental properties of these polynomials have been studied in detail
in the monographs [25, 26, 11].

Now letG be a bounded simply connected domain with quasiconformal bound-
ary L. Without loss of generality, we assume that 0 ∈ G. Since L is quasicon-
formal, by definition there exists a quasiconformal homeomorphism of C onto
itself that maps a circle onto L. Moreower, there exists (see, for example, [3, pp.
107-109]) a canonical quasiconformal reflection y = y(ζ) across the boundary L,
which is differentiable almost everywhere on C, except possibly at the points of
L, and for any small fixed δ > 0 satisfies the relations

|yζ |+
∣∣∣yζ∣∣∣ ≤ c1, δ < |ζ| < 1/δ; if ζ /∈ L, (3)

|yζ |+
∣∣∣yζ∣∣∣ < c2 |ζ|−2 ; if |ζ| ≥ 1/δ or |ζ| ≤ δ,

for some positive constants ci = ci(δ), i = 1, 2.
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If f is analytic and bounded in G, then the integral representation:

f(z) = − 1

π

∫∫
G

c

(f ◦ y) (ζ) y
ζ
(ζ)

(ζ − z)2
dσ (ζ) , z ∈ G, (4)

holds, proved by V. I. Belyi in [6] (see also [3, pp. 103-113]). This formula
plays an important role in proving direct theorems of approximation theory in
the uniform norm in domains with a quasiconformal boundary. Considering only
canonical reflections, Batchaev [5] proved that this representation is true also in
the space A (G).

The integral representation (4) is also very useful for investigation of approxi-
mation problems in the weighted and nonweighted Bergman spaces (see, for exam-
ple, [5, 9, 12, 14]). In particular, in [12] maximal convergence (not simultaneous)

properties of partial sums Sn(f) :=
n∑

k=0

ak (f)F
′
k (z) of the series

∞∑
k=0

ak (f)F
′
k (z),

produced by the integral representation (4), were investigated and corresponding
approximation errors were estimated. In other words, for a given f ∈ A2 (MR),
R > 1, the error of approximation |f − Sn(f)| in the Bergman space A2 (M) , in
dependence of the best approximation number

En(f,MR) := inf
p∈Πn

∥f − p∥A2(MR) ,

where Πn is the class of algebraic polynomials of degree at most n and the pa-
rameters n, M and R was estimated. Similar results for generalized Faber series
were obtained in [14].

In the classical Smirnov classes of analytic functions, maximal approximation
problems in the uniform norm were investigated in the monogaphs [28, 25, 11, 26].
Let us emphasize that in all of these studies, only maximal convergence problems
were considered. On the other hand, some works treated simultaneous approx-
imation problems in the real line and in the complex plane (see, for example,
[26, 10, 3, 23]), i.e., convergence of the derivatives of series constructed using the
given function to the derivatives of function. But, as far as we know, there are no
studies investigating both problems, maximal and simultaneous approximation
problems, at the same time in the weighted Bergman spaces.

2. Description of results

In this work, we first define a new set of weight functions ω, and then the
corresponding weighted Bergman space A2 (MR, ω).

Let G be a simply connected bounded domain in C.
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Definition 1. Let g be an analytic function in G
c
, g (∞) > 0, and for some fixed

constant R0 ∈ (1,∞)∫∫
GR0

⧹G

|g (z)|2 dσ (z) ·
∫∫

GR0
⧹G

|g (z)|−2 dσ (z) <∞. (5)

We define a weight function ω as follows:

ω(z) := |(g ◦ y) (z)|−2 , z ∈ G.

By W 2(G) we denote the set all of weight functions ω defined above.

Lemma 1. If f ∈ A2 (MR, ω) , ω ∈W 2(MR), R > 1, then f ∈ A (MR).

Proof. Let y = yR(z) be a canonical quasiconformal reflection across the level
line LR = ∂MR, R < R0. Using (3) and (5), for any sufficiently small fixed δ > 0
we get ∫∫

MR

|(g ◦ yR) (z)|2 dσ (z)

=

∫∫
Mc

R

|g (z)|2
(∣∣(yR)z ∣∣2 − ∣∣(yR)z ∣∣2) dσ (z) ≤ ∫∫

Mc
R

|g (z)|2
∣∣(yR)z ∣∣2 dσ (z)

=

∫∫
MR0

⧹MR

|g (z)|2
∣∣(yR)z ∣∣2 dσ (z) + ∫∫

Mc
R0

|g (z)|2
∣∣(yR)z ∣∣2 dσ (z)

≤ c3

∫∫
MR0

⧹MR

|g (z)|2 dσ (z) + c4

∫∫
Mc

R0

∣∣(yR)z ∣∣2 dσ (z) <∞,

where c4 = max
{
|g (z)| : z ∈ Mc

R0

}
. Hence, by Hölder’s inequality,∫∫

MR

|f (z)| dσ (z)


2

≤

∫∫
MR

|f (z)|2 ω (z) dσ (z)


2∫∫

MR

|(g ◦ yR) (z)|2 dσ (z)


2

<∞.

◀
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Let f ∈ A2 (MR, ω) , ω ∈ W 2(MR), R > 1. Since the level line LR is a
quasiconformal curve and yR(z) is a canonical quasiconformal reflection across
LR, by Lemma 1 we have f ∈ A (MR) and then

f(z) = − 1

π

∫∫
Mc

R

(f ◦ yR)(ζ) (yR)
ζ
(ζ)

(ζ − z)2
dσ (ζ) , z ∈ MR, (6)

which, by substituting ζ = ψ(w), can be rewritten as

f(z)

=
−1

π

∫∫
|w|>R

(f ◦ yR) (ψ(w)) (yR)
ζ
[ψ (w)]ψ′(w)

ψ
′
(w)

[ψ(w)− z]2
dσ (w)

=
−1

π

∫∫
|w|>R

(f ◦ yR) (ψ(w)) (yR)
ζ
[ψ (w)]ψ′(w)

g [ψ(w)]

g [ψ(w)]ψ
′
(w)

[ψ(w)− z]2
dσ (w) . (7)

Hence, for the m-th, m ∈ N, order derivatives of (6) and (7) we have

f (m)(z)

= −(m+ 1)!

π

∫∫
Mc

R

(f ◦ yR) (ζ) (yR)
ζ
(ζ)

(ζ − z)m+2 dσ (ζ) (8)

=
−1

π

∫∫
|w|>R

(f ◦ yR) (ψ(w))(yR)ζ [ψ (w) ]ψ′(w)

g [ψ(w)]

(m+ 1)!g[ψ(w)]ψ
′
(w)

[ψ(w)− z]m+2 dσ (w) .

Now, considering the expansion (2) in (8), we have the series representation

f (m)(z) ∼
∞∑

k=m+1

ak (f)F
(m+1)
k (z, g) , z ∈ MR, m ∈ N, (9)

for ∀f ∈ A2(MR, ω) with the coefficients

ak (f) :=− 1

π

∫∫
|w|>R

(f ◦ yR) (ψ(w)) (yR)
ζ
[ψ (w)]ψ′(w)

g [ψ(w)]wk+1
dσ (w) , k = m+1, m+2, ... .

As follows from Theorem 1 proved in [14], if f ∈ A2(MR, ω), ω ∈ W 2(MR),
then in the case of m = 0 the generalized Faber series (9) converges uniformly
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to f on any compact subset of MR. Hence, by the Weierstrass theorem on the
uniform convergence of derivative series, we have

f (m)(z) =
∞∑

k=m+1

ak (f)F
(m+1)
k (z, g) , z ∈ M, m ∈ N

uniformly on any compact subset of MR. Now we denote

Rn(z, f
(m), g)

: = f (m)(z)−
n∑

k=m+1

ak (f)F
(m+1)
k (z, g)

=
∞∑

k=n+1

ak (f)F
(m+1)
k (z, g) , n ≥ m, z ∈ M.

In this work, for a given f ∈ A2(MR, ω) and a fixed m ∈ N, maximal-
simultaneous approximation properties of partial sums of the derivative Faber
series

∞∑
k=n+1

ak (f)F
(m+1)
k (z, g) , n ≥ m,

in the spaceA2(M) are studied. Namely, the error of approximation
∣∣Rn(z, f

(m), g)
∣∣

in the Bergman spaces A2(M), in dependence of the best approximation number
En(f,MR, ω) := inf

p∈Πn

∥f − p∥A2(MR,ω) , and the parameters n, m, M and R is

estimated.

As can be seen, we intend to investigate, unlike previous studies, both maxi-
mal and simulataneous approximation problems at the same time.

Now we state our main results.

Theorem 1. Let M ⊂ C be a bounded continuum with more than one point and
with connected complement, and Fk (z, g) be its k-th generalized Faber polynomial.
If f ∈ A2(MR, ω), where ω ∈ W 2 (MR), R > 1, then for given m ∈ N and
r ∈ (1, R) there exists a constant c(R,M,m,r, ω) > 0 such that for every n ≥ m+1
the inequality∥∥∥Rn(z, f

(m), ω)
∥∥∥
A2(M)

≤ c(M,R,m, r, ω)
En(f,MR, ω) (n+ 1)!

(n+ 1−m)!

( r
R

)n+1

holds.
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In the case, of ω ≡ 1we have the estimate∥∥∥Rn(z, f
(m))

∥∥∥
A2(M)

≤ c(M,R,m, r)
En(f,MR) (n+ 1)!

(n+ 1−m)!

( r
R

)n+1
,

which improves the estimate∥∥∥Rn(z, f
(m))

∥∥∥
A2(M)

≤ c(M,R,m, r)
En(f,MR) (n+ 1)!√

n+ 1 (n−m)!

( r
R

)n+1
,

proved in [19].

In the case of m = 0, we have

Corollary 1. Under the conditions of Theorem 1, there exists a constant c(R,M,r, ω) >
0 such that for every n ∈ N the inequality

∥Rn(z, f, ω)∥A2(M) ≤ c(M,R, r,ω)En(f,MR, ω)
( r
R

)n+1

holds.

Corollary 1 was proved in [14, Theorem 3].

If m = 0 and ω = 1, then we have

Corollary 2. Under the conditions of Theorem 1, there exists a constant c(R,M) >
0 such that for every n ∈ N the inequality

∥Rn(z, f)∥A2(M) ≤ c(M,R)
En(f,MR)

Rn+1

holds.

This corollary was proved in [12, Theorem 4].

Theorem 2. For the given numbers R > 1 and m ∈ N, under the conditions of
Theorem 1 the inequality

lim
n→∞

n

√
En(f (m),M, ω)/En(f,MR, ω) ≤ 1/R

holds.

As can be seen, the upper limit of the quantity n
√
En(f (m),M, ω)/En(f,MR, ω)

can be estimated independently of m.
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3. Auxiliary results

We will use the following area theorem, due to Lebedev and Milin, which can
be found in [26, p. 170].
Theorem A. Let an analytic function w = Q(z) on a bounded continuum M
with connected complement be given. Suppose that the expansion of the composite
function w = Q [ψ (t)] in a ring 1 < |t| < ρ has the form

Q [ψ (t)] =
∞∑
j=0

ajt
j +

∞∑
j=0

bj/t
j , 1 < |t| < ρ.

Then the area of the Riemann surface, onto which the function w = Q(z)
maps the continuum M, is given by the formula

S = π

 ∞∑
j=1

j |aj |2 −
∞∑
j=1

j |bj |2
 ≥ 0,

which implies that
∞∑
j=1

j |bj |2 ≤
∞∑
j=1

j |aj |2 .

The following lemma was proved in [14, Lemma 2].

Lemma 2. Let f ∈ A2(MR), R > 1, and yR be a quasiconformal reflection across
the level line LR of the continuum M. Then

∫∫
Mc

R

∣∣∣∣∣(f ◦ yR) (ζ) (yR)
ζ
(ζ)

g (ζ)

∣∣∣∣∣
2

dσ (ζ) ≤
∥f∥2A2(MR,ω)

1− k2R
,

where kR = (KR − 1)/(KR + 1) and KR is a quasiconformality coefficient of the
level line LR.

Lemma 3. Let Fk (·, g) , k = 0, 1, 2, ..., be the generalized Faber polynomials for
the continuum M, and 1 < r < R, R > 1. Then for given m ∈ N there exists a
constant c(r,M,m,R) such that

∞∑
k=n+1

∥∥∥F (m+1)
k (·, g)

∥∥∥2
A2(M)

kR2k
≤ c(M,R,m, r) [(n+ 1)!]2

[(n+ 1−m)!]2

( r
R

)2n
, n ≥ m.
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Proof. It is well known that if Fk (z, g) , k = 0, 1, 2, ..., is the generalized Faber
polynomial of order k for the continuum M, then

Fk (z, g) = [φ (z)]k g (z) + Ek(z, g), z ∈ Mc, (10)

where Ek(z, g) is analytic in Mc, Ek(∞, g) = 0, and in some neighborhood of ∞
its power series representation contains negative powers only. In particular, for
the first and second derivatives of (10) we have

F
′
k (z, g) = k [φ (z)]φ

′
(z) g(z) + g

′
(z) [φ (z)]k + E

′
k(z, g)

= : k [φ (z)]k−1A1(z, g) + g
′
(z) [φ (z)]k + E

′
k(z, g)

= : k [φ (z)]k−1 Λ1(z, g),

F
′′

k (z) = k (k − 1) [φ (z)]k−2 φ
′
(z)A1(z, g) + k [φ (z)]k−1A

′
1(z, g)

+k [φ (z)]k−1 φ
′
(z) g

′
(z) + g

′′
(z) [φ (z)]k + E

′′
k (z, g)

= : k (k − 1) [φ (z)]k−2A2(z, g) + g
′′
(z) [φ (z)]k + E

′′
k (z, g)

= : k (k − 1) [φ (z)]k−2 Λ2(z, g),

respectively. Using the substitution z = ψ (w) in these equalities, we have

F
′

k [ψ (w) , g] = kwk−1Λ1 [ψ (w) , g] ,

F
′′

k [ψ (w)] = k (k − 1)wk−2Λ2 (w, g) ,

where Λi (w, g) , i = 1, 2, are analytic functions in D
c
and hence F

′

k [ψ (w) , g]

and F
′′

k [ψ (w) , g] have a pole of order at most k − 1 and k − 2, respectively, in
∞. Generalizing this operation for higher derivatives, we see that the function

F
(m)
k [ψ (w) , g] , k = m, (m+ 1) , ... can be written as

F
(m)
k [ψ (w) , g] = k (k − 1) (k − 2) · · · (k −m+ 1)wk−mΛm (w, g) , (11)

where Λm (w, g) is analytic in D
c
, with pole of order at most k−m at ∞. There-

fore, the function F
(m)
k [ψ (w) , g] has the series representation

F
(m)
k [ψ (w)] =

k!

(k −m)!

k−m∑
j=0

α
(m)
j wj +

∞∑
j=1

b
(m)
j /wj

 (12)

with the coefficients b
(m)
j , j = 1, 2, ..., and α

(m)
j , j = 0, 1, 2, ..., k −m, where the

coefficients α
(m)
j can be defined as

α
(m)
j =

1

2πi

∫
|w|=r

wk−mΛm (w, g) dw

wj+1
, j = 0, 1, 2, ..., k −m, (13)
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for some r > 1 and estimated by the inequalities∣∣∣α(m)
j

∣∣∣ ≤ rk−m−jc5(r,M,m, g), j = 0, 1, 2, ...k −m. (14)

Now denote Q(z) := F
(m)
k (z, g) . From Theorem A it follows that the area of the

Riemann surface, onto which the function F
(m)
k (z, g) maps the continuum M,

can be estimated by the formula

S = π

(
k!

(k −m)!

)2
k−m∑

j=1

j
∣∣∣α(m)

j

∣∣∣2 − ∞∑
j=1

j
∣∣∣b(m)

j

∣∣∣2
 ≥ 0,

and hence by (14)

S ≤ π

(
k!

(k −m)!

)2

c25(r,M,m, g)
k−m∑
j=1

jr2(k−m−j)

= π

(
k!

(k −m)!

)2

c25(r,M,m, g)r2(k−m)
k−m∑
j=1

jr−2j .

Estimating the last sum by

k−m∑
j=1

j
(
1/r2

)j
= (k −m)

k−m∑
j=1

(
1/r2

)j ≤ c6(r)(k −m)/r2,

we have

S ≤ π

(
k!

(k −m)!

)2

M2(r,M,m, g)c(r)(k −m)r2(k−m−1)

≤ c7(r,M,m, g)

(
k!

(k −m)!

)2

(k −m) r2(k−m−1).

On the other hand, the area of the Riemann surface, onto which the function

w = F
(m)
k (z, g) maps the continuum M, can be also calculated with the help of

the formula

S =

∫∫
M

∣∣∣F (m+1)
k (·, g)

∣∣∣2 dxdy =
∥∥∥F (m+1)

k (·, g)
∥∥∥2
A2(M)

.

Hence, after simple computations we have

∞∑
k=n+1

∥∥∥F (m+1)
k (·, g)

∥∥∥2
A2(M)

kR2k
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≤ c7(r,M,m, g)
∞∑

k=n+1

(
k!

(k−m)!

)2
(k −m) r2(k−m−1)

kR2k

≤ c7(r,M,m, g)
1

r2(m+1)

∞∑
k=n+1

(
k!

(k −m)!

)2 ( r
R

)2k

≤ c(r,R,M,m, g) [(n+ 1)!]2

[(n+ 1−m)!]2

( r
R

)2n
.

◀

Remark 1. In particular, when m = 0, g = 1 and M :=D, we have

∞∑
k=n+1

∥∥∥F ′
k

∥∥∥2
A2(M)

kR2k
=

π

R2 − 1

1

R2n
,

which shows that the inequalities proved in Lemma 3 are precise in the sense that
the degree n in the factor 1/R2n cannot be increased even in the case of M :=D.

4. Proofs of main results

Proof of Theorem 1 Let f ∈ A2(MR, ω), ω ∈W 2 (MR), R > 1 and P ∗
n be

its best approximation polynomial in the norm ∥·∥A2(MR,ω) , i.e.,

∥f − P ∗
n∥A2(MR,ω) = En(f,MR, ω).

Then for every z ∈ M and n ≥ m+ 1 we have∣∣∣Rn(z, f
(m), ω)

∣∣∣
=

∣∣∣∣∣f (m)(z)−
n∑

k=m+1

ak (f)F
(m+1)
k (z, g)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
k=n+1

ak (f)F
(m+1)
k (z, g)

∣∣∣∣∣
=

1

π

∣∣∣∣∣∣∣
∫∫
|w|>R

(f − P ∗
n) ◦ yR [ψ(w)] ψ′(w) (yR)

ζ
[ψ(w)]

g [ψ(w)]

∞∑
k=n+1

F
(m+1)
k (z, g)

wk+1
dσ (w)

∣∣∣∣∣∣∣ .
By Hölder’s inequality ∣∣∣Rn(z, f

(m), ω)
∣∣∣2
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≤
∫∫
|w|>R

∣∣∣∣∣∣
(f − P ∗

n) ◦ yR [ψ(w)] ψ′(w) (yR)
ζ
[ψ(w)]

g [ψ(w)]

∣∣∣∣∣∣
2

dσ (w)

·
∫∫
|w|>R

∣∣∣∣∣
∞∑

k=n+1

F
(m+1)
k (z, g)

wk+1

∣∣∣∣∣
2

dσ (w) =: I1 · I2.

By Lemma 2

I1 =

∫∫
|w|>R

∣∣∣∣∣∣
(f − P ∗

n) ◦ yR [ψ(w)] ψ′(w) (yR)
ζ
[ψ(w)]

g [ψ(w)]

∣∣∣∣∣∣
2

dσ (w)

=

∫∫
Mc

R

∣∣∣∣∣ [(f − P ∗
n) ◦ yR ] (ζ) (yR)

ζ
(ζ)

g (ζ)

∣∣∣∣∣
2

dσ (ζ)

≤
∥f − P ∗

n∥
2
A2(MR,ω)

1− k2R
.

For I2 we have

I2 =

∫∫
|w|>R

∣∣∣∣∣
∞∑

k=n+1

F
(m+1)
k (z, g)

wk+1

∣∣∣∣∣
2

dσ (w) =
∞∑

k=n+1

∣∣∣F (m+1)
k (z, g)

∣∣∣2
kR2k

.

Then

∣∣∣Rn(z, f
(m), ω)

∣∣∣2 ≤ ∥f − P ∗
n∥

2
A2(MR,ω)(

1− k2R
)2 ∞∑

k=n+1

∣∣∣F (m+1)
k (z, g)

∣∣∣2
kR2k

.

Now, by integrating both sides of this inequality overM and applying Lemma
3 we have

∥∥∥Rn(z, f
(m), ω)

∥∥∥2
A2(M)

≤
∥f − P ∗

n∥
2
A2(MR,ω)

1− k2R

∞∑
k=n+1

∥∥∥F (m+1)
k (·, g)

∥∥∥2
A2(M)

kR2k
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≤ c8(M,R, r,m, g)E2
n(f,MR, ω) [(n+ 1)!]2

[(n+ 1−m)!]2

( r
R

)2n
,

which implies that∥∥∥Rn(z, f
(m), ω)

∥∥∥
A2(M)

≤ c(M,R, r,m, g)En(f,MR, ω) (n+ 1)!

(n+ 1−m)!

( r
R

)n+1
.

◀
Proof of Theorem 2.Since En(f

(m),M, ω) ≤
∥∥Rn(z, f

(m), ω)
∥∥
A2(M)

, by

Theorem 1 we have

En(f
(m),M, ω) ≤ c(R,M,r,m, g)En(f,MR, ω) (n+ 1)!

(n+ 1−m)!

( r
R

)n+1
,

or

En(f
(m),M, ω)/En(f,MR, ω) ≤ c(R,M,r,m, g) (n+ 1)!

(n+ 1−m)!

( r
R

)n+1

≤ c(R,M,r,m, g)m (n+ 1)
( r
R

)n+1
.

Taking here the (n+ 1)-th order root of both sides and passing to the limit
as n→ ∞, we get

lim
n→∞

n+1

√
En(f (m),M, ω)/En(f,MR, ω) ≤

r

R
.

Since r > 1 is arbitrary, now passing to the limit as r → 1 we obtain the desired
inequality

lim
n→∞

n+1

√
En(f (m),M, ω)/En(f,MR, ω) ≤

1

R
.

◀
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