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Existence and Continuous Dependence of
Nonlocal Final Value ProblemWith Caputo-Hadamard
Derivative

N.H. Tuan, V.V. Tri∗

Abstract. In this paper, we demonstrate the existence of a global solution to the
problems with the final condition containing the Caputo-Hadamard derivative of or-
der p ∈ (0, 1). In particular, the uniqueness of the solution is proven when the source
function satisfies the Lipschitz condition. To obtain these results, we employ topological
degree theory in conjunction with the condensation condition of the operator, which cor-
responds to a measure of noncompactness. A few examples are provided to demonstrate
the utility of this approach.
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1. Introduction

Fraction calculations appeared very early; until now, they have been con-
stantly developing because of their applicability in practice. Anomalous dynamic
phenomena occur in physics, chemical biology, and even optimal control, among
other fields (see [4, 2, 5, 7, 1, 3, 6] and references therein). The theory of fractional
calculus developed brilliantly through the contributions of many mathematicians,
including Oldham and Spanier (1974), Samko, Kilbas and Marichev (1993), Pod-
lubny (1999), etc. Many practical applications and several different fractional
derivatives, such as Riemann-Liouville fractional derivative, Caputo fractional
derivative [8, 9], Riesz fractional derivative [9], and Hadamard, Hadamard-Type
fractional derivative [5, 7, 10] and their properties, have been introduced.
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The Caputo-Hadamard derivative with kernel was introduced in recent years,
and it has piqued the interest of some mathematicians [14, 13, 12, 11]. Intending
to contribute to the enrichment of this field, we are interested in partial differential
equations containing Caputo-Hadamard derivatives with fractional order.

Let X be a Banach space with the norm | · |, and J = [a, T ]. We denote by
C(J,X) the Banach space of continuous functions from J into X with the norm
‖u‖ = sups∈J |u(t)|.

In this paper, we first consider the equation containing the fractional Caputo-
Hadamard derivative of order q ∈ (0, 1):{

C
HD

q
T−u(t) = f(t, u(t)), a.e. t ∈ J,

u(T ) = −g(u) + ξT ,
(1)

where ξT ∈ X, f : (a, T ]×X → X and g : C(J,X)→ X are the given functions
satisfying the following conditions:

(f): f is L
1
p1 -Caratheodory, that is,

(f1): f(t, .) : X → X is continuous for a.e. t ∈ (a, T ) and for x ∈ X, the
function f(., x) : J → X is measurable;

(f2): there exist p1 ∈ [0, q) and β1 ∈ L
1
p1 (J,R+) such that

|f(t, w)| ≤ (|w|+ 1)β1(t) a.e on J,

for all w ∈ X;
(g):
(i): either

(i1): g is Lipscitz with a constant Kg ∈ [0, 1) or
(i2): g is compact.

(ii): there exists cg > 0 such that

|g(u)| ≤ cg(‖u‖+ 1) for all u ∈ C(J,X).

Next, we consider the problem of finding u = u(t, x) satisfying{
C
HD

q
T−u(t) = Lu(t) + F(t, u(t)), a.e. t ∈ J,

u(T ) = −g(u) + ξT ,
(2)

where L is a bounded linear operator from X to X, F : J × X → X and
g : C(J,X)→ X satisfy the conditions (g) and

(F):
(i): F(t, .) : X → X is continuous for a.e. t ∈ (a, T ) and for x ∈ X, the

function F(., x) : J → X is measurable and



146 N.H. Tuan, V.V. Tri

(ii): there exists β ∈ L1,γ((a, T ),R+) for some γ > −q such that

|F(t, w)| ≤ β(t)(|w|+ 1),

for a.e. t ∈ (a, T ), for all w ∈ X, where

L1,γ((c, b), X) =

{
d ∈ L1((c, b), X) :

(
ln

b

(.)

)−γ
d(.) ∈ L∞((c, b), X)

}
, and

‖h(.)‖L1,γ((c,b),X) =

∥∥∥∥∥
(

ln
b

(.)

)−γ
h(.)

∥∥∥∥∥
L∞((c,b),X)

,

with ‖u‖L∞((c,b),X) = inf{C > 0 : |u(t)| ≤ C, a.e. t ∈ (c, b)}.
Several articles related to this study are listed below. Ma-Li [15] established

some of the fundamental properties of Hadamard-type fractional operators, such
as semigroup and reciprocal properties. The authors propose well-posed condi-
tions for HTFDEs of fractional order ρ ∈ (0, 1):

HDρa+,µ
u(t) = g(t, x)

u(a) = ua.

Gohar et al. in [11], investigated the fractional differential equation of Caputo-
Hadamard

C
HD

ρ
a+u(t) = f(t, u(t)),

with the initial condition limt→a+ u(t) = ua ∈ R. They used Ascoli’s theorem to
prove the existence of the local solution. When f satisfies the Lipschitz condition,
the authors achieve the uniqueness of the solution.

In [12], Li et al. studied the explosion and global existence of solutions to the
space-time fractional diffusion equation

C
HD

ρ
a+u(t, x) + (−∆)σu(t, x) = |u(t, x)|q−1, x ∈ RN , t > a > 0

u(t, x) = ua(x), x ∈ Rn,

where ρ ∈ (0, 1), 0 < σ < 1.
Allow us to share a few technical remarks and contributions to our work.

• The solution and source function f take values in the general Banach space
X rather than the set of real numbers R. This is useful when applied to
problems.
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• The final condition depends on the given source function g. In the particular
case of g = 0, we obtain the well-known results.

• Using the Lebesgue-dominated convergence theorem to determine
limt→t∗

∫
E Φt(s)ds, we frequently have difficulty locating the upper-bounded

integrable function of the family {Φt(s)}t∈T . We solve this problem by
demonstrating that the family {

∫
E Φt(s)ds}t∈T is bounded and deriving a

convergent subsequence.

These issues have not yet been researched, as far as we know. The method used
is the theory of topological degree for condensing mapping to prove the existence
of its fixed points.

The remainder of this paper is structured as follows. The following section
goes over the definitions of the Hadamard integral and Hadamard derivative, as
well as the properties that will be used later. Section 3 discusses the existence of
solutions to the Caputo-Hadamard fractional differential equations (1) and (2).
The final section contains illustrative examples of applications to problems with
final non-local conditions.

2. Preliminaries

Denote by b(Y ) (resp., cc(Y ), ccb(Y )) the family of all nonempty and bounded
(resp., convex and closed, convex-closed and bounded) subsets of Banach space
Y . Throughout this article, without explanation, X is a Banach space with norm
|.| and the order generated by the cone P , that is, P ∈ cc(X), γP ⊂ P for
all γ ≥ 0 (we do not require that P ∩ (−P ) = {0}, and in particular, we can
choose P = Y ), and we write x ≤1 y iff y − x ∈ P . We always consider P to
be the normal cone in the Banach space X, that is, there exists N > 0 such
that x ≤1 y implies |x| ≤ N |y| ∀u, v ∈ P . Let 0 < a < T , J = [a, T ]. Denote
P = {u ∈ C(J,X) : u(t) ∈ P ∀t ∈ J}. Then P is a normal cone in C(J,X) and
wewrite u � v iff v(t)− u(t) ∈ P for all t ∈ J . We define Jc = [c, T ] for c ∈ [a, T )
and C(Jc, X) = {u : Jc → X| u is continuous}. Then C(Jc, X) is the Banach
space with the norm ‖u‖C(Jc,X) = sups∈Jc |u(t)|. In addition, it is clear that
‖u‖C(Jc,X) ≤ ‖u‖C(J,X) = ‖u‖ for all u ∈ C(I,X). The characteristic function of
A ⊂ J is denoted by χA.

2.1. Caputo-Hadamard fractional derivative

Let u : J → X and c < d. In this article, we use the concept of the integral
of u in terms of the Bochner integral, and we already know that u is Bochner
integrable on (c, d) if and only if

∫ d
c |u(s)|ds <∞.
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Definition 1. Let q ∈ (0,∞), a < b <∞, q > 0. The right Hadamard-type frac-
tional integral HD

−q
b− f and the right Hadamard-type fractional derivative HD

q
b−f

of order q, are defined by

HD
−q
b− f(t) =

1

Γ(q)

∫ b

t

1

s

(
ln
s

t

)q−1
f(s)ds, (a ≤ t < b)

and

HD
q
b−f(t) = (−δ)n

(
HD

−(n−q)
b− f

)
(t)

=

(
− d

dt

)n 1

Γ(n− q)

∫ b

t

1

s

(
ln
s

t

)n−q−1
f(s)ds, (a ≤ t < b)

respectively, where n = [q] + 1 and δ = t ddt .

Lemma 1. [16, Page 116, Property 2.28] Let q > 0 and x ∈ Lµ((a, b), X) for
some µ ∈ [1,∞]. We have(

HD
q
b−

(
HD

−q
b−

)
x
)

(t) = x(t).

Lemma 2. [16, Page 117, Lemma 2.35] Let 0 < a < b < ∞ and q > 0. If
x ∈ J q

b−(Lµ((a, b), X)) for some µ ∈ [1,∞], then

HD
−q
b− (HD

q
b−x)(t) = x(t),

where J q
b−(Lµ((a, b), X)) =

{
HD

−q
b−ψ : ψ ∈ Lµ((a, b), X)

}
.

Definition 2. The Caputo-Hadamard derivative of f with order q > 0 is defined
by

C
HD

q
b−f(t) =H Dq

b−

[
f(t)−

n−1∑
k=0

δkf(b)

k!

(
ln
b

t

)k]
,

where n = [p] + 1. In particular, if 0 < p < 1 and f ∈ C(J,X), then

C
HD

p
b−f(t) =H Dp

b− [f(t)− f(b)].

2.2. Fixed point index

A map α : b(X)→ X is called a measure noncompactness (in short, M.N.C.)
if α(co(ω)) = α(ω) for all ω ∈ b(X). An operator T : X → X is said to be
condensing to α (in short, α-condensing) if ω ∈ b(X) with α(ω) ≤ α(T(ω)).
Then ω is relative compact in X ([17, see Definition 2.1.1]).
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Let G ⊂ X and ε > 0. A subset L of E is said to be ε-net of G if G ⊂
⋃
x∈L
{y ∈

E : ‖x−y‖ < ε}. If L is finite, then L is called a finite ε-net. We use the M.N.C.
α defined by α(G) = inf{ε > 0 : G has a finite ε-net}.

Let D be an open subset of the Banach space Y , D ∈ b(Y ), 0 ∈ Ω, and
P ∈ cc(Y ) with Ω ∩ P 6= ∅. Assume that T : D ∩ P :→ P is a continuous and
α-condensing operator. If x 6= T (x) for all x ∈ ∂D∩P , then the fixed point index
iP (T,D) of T is well defined. The useful properties of this topological degree are
shown in [18, Theorem 2.1]. We need the following results, which were proved in
[19].

Proposition 1. [19, Proposition 2.4] Let D 3 0 be an open bounded subset of Y
and P ∈ cc(Y ) with D ∩ P 6= ∅. Assume that T : D ∩ P :→ P is a continuous
and α-condensing operator. Then we have the following properties:

[(i)]

1. if ρu 6= T (u) for all (u, ρ) ∈ (∂D ∩ P )× [1,∞), then iP (T,D) = 1.

2. if there is u0 ∈ P\{0} satisfying u 6= T (u) + ρu0 for all (u, ρ) ∈ (∂D∩P )×
[0,∞), then iP (T,D) = 0.

Proposition 2. [18, Theorem 2.1] Assume that P ∈ cc(X), D is an open subset
of Y , and T : D ∩ P → P is a continuous and α-condensing operator such that
u 6= T (u) for all u ∈ ∂D ∩ P . Then,

[(i)]

1. Fix(T ) 6= ∅ if iP (T,D) 6= 0, where Fix(T ) := {x : T (x) = x};

2. if D = D1 ∪D2, where D1, D2 ⊂ Y with D1 ∩D2 = ∅, such that u 6= T(u)
for u ∈ (∂D1 ∪ ∂D2) ∩ P , then

iP (T,D) = iP (T,D1) + iP (T,D2).

We use the above result in the following form:

Lemma 3. [20, Consequences of Theorem 4.1] Let {φn} be a sequence in Lp(J,R)
(p ≥ 1) such that

[(i)]

1. φn(s)↘ 0 (resp., ↗ 0), a.e. s ∈ J ;

2. there exists c > 0 such that
(∫
J |φn(s)|pds

) 1
p ≤ c for all n ∈ N.

Then
(∫
J |φn(s)|pds

) 1
p → 0, as n→∞.
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3. Main results

3.1. Integral formulations

The set of the absolutely continuous functions from J into X is denoted by
AC(J,X).

Proposition 3. Assume that (C1) and (C2) hold. A function u ∈ AC(J,X) is
an integral solution of Problem (1) (resp., (2)) iff u satisfies{

u(t) = −g(u) + ξT +H D−q
T−f(t, u(t)), a.e. t ∈ J,

u(T ) = −g(u) + ξT ,
(3)

(resp., {
u(t) = −g(u) + ξT +H D−q

T−Lu(t) +H D−q
T−F(t, u(t)), a.e. t ∈ J,

u(T ) = −g(u) + ξT . )
(4)

Proof. We consider equation (2), and the remaining equation is argued sim-
ilarly. Suppose that u ∈ C(J,X) satisfiying (4). Obviously, for t ∈ [a, T ), we
have ∣∣∣HD−qT−u(t)

∣∣∣ ≤ ∞ and∣∣∣HD−qT−F(t, u(t))
∣∣∣ ≤ ∞.

Therefore, functions s 7→ 1
s

(
ln s

t

)p−1 Lu(s) and s 7→ 1
s

(
ln s

t

)p−1F(s, u(s)) are
Bochner integrable on [t, T ].

From (4), it follows that

u(t)− u(T ) =H D−q
T−Lu(t) +H D−q

T−F(t, u(t)).

By using Lemma 1, we obtain

HD
q
T− [u(t)− u(T )] = Lu(t) + F(t, u(t)).

Thus, u is a solution of (2).
Reversely, if u ∈ AC(J,X) satisfies (2), then there exists ϕ ∈ L1(J,X) such

that u(t) = u(T ) −
∫ T
t ϕ(s)ds. Hence, u(t) − u(T ) =H D−qa φ(s) with φ(s) =

−Γ(q)s
(
ln s

t

)−q+1
ϕ(s). Thus, u(.)−u(T ) ∈ J q

T−(L1(J,X)). Applying Lemma 2,

HD
q
T−

(
HD

−q
T−

)
[u(t)− u(T )] = u(t)− u(T ). It implies (4). J

From the above results, we have the following definitions:
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Definition 3. A function u ∈ C(J,X) is said to be an integral solution to Prob-
lem (1) (resp., (2)) if it satisfies the following conditions:

(i) u(T ) = −g(u) + ξT ,

(ii) u(t) = −g(u) + ξT +H D−q
T−f(t, u(t)) t ∈ [a, T )

(resp., u(t) = −g(u) + ξT +H D−q
T−Lu(t) +H D−q

T−F(t, u(t)) t ∈ [a, T )).

3.2. Boundedness settings

We define the following operators to establish the existence of a solution to
problem (1):

U,F,T : C(J,X)→ C(J,X), u ∈ C(J,X),

U(u)(t) = −g(u) + ξT , t ∈ J ;

F (u)(t) =H D−q
T−f(t, u(t)) for a ≤ t < T ; and F (u)(T ) = 0;

T(u) = U(u) + F (u).

Then, the problem (1) has a solulion if and only if Fix(T) 6= ∅.
To prove the existence of a solution to problem (2), we consider the following

operators:
U,F,G : C(J,X)→ C(J,X),

U(u)(t) = −g(u) + ξT , t ∈ J ;

F(u)(t) =H D−q
T−Lu(t) +H D−q

T−F(t, u(t)) for a ≤ t < T ; and F(u)(T ) = 0;

G(u) = U(u) + F(u).

The problem (2) has a solulion if and only if G has a fixed point in C(J,X).

Proposition 4. Let a < b ≤ T . We have the following assertions:

(i) If the condition (f) holds, then∣∣∣HD−qb− f(t, u(t))
∣∣∣ ≤ C1(b− t)q−p1(‖u‖C(J,X) + 1)

for all u ∈ C(J,X) and a ≤ t < b, where C1 = (1−p1)1−p1

Γ(q)aq(q−p1)1−p1 ‖β1‖
L

1
p1 (J,X)

.

(ii) If the condition (F) is true, then

|HD−qb−Lu(t)| ≤ C0(b− t)q‖u‖C(J,X);

|HD−qb−F(t, u(t))| ≤ C2(b− t)q+γ(1 + ‖u‖C(J,X)),

for all u ∈ C(J,X), a ≤ t < b, here C0 =
‖L‖†

aqΓ(q+1) , C2 =
‖β‖L1,γ (J,X)

aq+γ
Γ(γ+1)

Γ(q+γ+1) .
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(iii) If the conditions (f)-(F) are true, then

‖F (u)‖C(J,X) ≤ C1(T − a)q−p1
(
‖u‖C(J,X) + 1

)
, (5)

‖F(u)‖C(J,X) ≤ C0(T − a)q‖u‖C(J,X) + C2(T − a)q+γ
(
‖u‖C(J,X) + 1

)
(6)

for all u ∈ C(J,X); and the operators F and F are compact.

Proof. (i): Using Holder’s inequality, we have∣∣∣HD−qb− f(t, u(t))
∣∣∣ ≤ (‖u‖C([t,b],X) + 1)

Γ(q)

∫ b

t

1

s

(
ln
s

t

)q−1
β1(s)ds

≤
(‖u‖C(J,X) + 1)

Γ(q)
‖β1‖

L
1
p1 (J,X)

(∫ b

t

(
1

s

(
ln
s

t

)q−1
) 1

1−p1
ds

)1−p1

.

(7)

Using variable substitution z = ln s
t , we obtain(∫ b

t

(
1

s

(
ln
s

t

)q−1
) 1

1−p1
ds

)1−p1

≤ (1− p1)1−p1

aq(q − p1)1−p1
(b− t)q−p1 . (8)

From (7) and (8), we get (i).
(ii): Denote by ‖.‖† the norm defined on the Banach space of the linear operators
from X into X. For u ∈ C(J,X), we have

|Lu(t)| ≤ ‖L‖†|u(t)|
≤ ‖L‖†.‖u‖C(J,X).

This gives

|HD−qb−Lu(t)| ≤
‖L‖†.‖u‖C(J,X)

Γ(q)

∫ b−

t

1

s

(
ln
s

t

)q−1
ds

=
‖L‖†.‖u‖C(J,X)

qΓ(q)

(
ln
b

t

)q
≤
‖L‖†.‖u‖C(J,X)

aqΓ(q + 1)
(b− t)q . (9)

From (ii) of condition (F), using Holder’s inequality and changing variable z =
ln s

t

ln b
t

, we get

|HD−qb−F(t, u)| ≤
(‖u‖C(J,X) + 1)

Γ(q)

∫ b

t

1

s

(
ln
b

s

)q−1

β(s)ds
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≤
(‖u‖C(J,X) + 1)

Γ(q)
‖β‖L1,γ((a,b),X)

∫ b

t

1

s

(
ln
s

t

)q−1
(

ln
b

s

)γ
ds

≤
(‖u‖C(J,X) + 1)

Γ(q)
‖β‖L1,γ((a,b),X)

1

aq+γ
Γ(q)Γ(γ + 1)

Γ(q + γ + 1)
(b− t)q+γ

≤
‖β‖L1,γ(J,X)

aq+γ
Γ(γ + 1)

Γ(q + γ + 1)
(b− t)q+γ(‖u‖C(J,X) + 1). (10)

From (9)-(10), we derive (ii).
(iii): For u ∈ C(J,X), to show F (u) ∈ C(J,X), instead of considering the

continuity of F (u) at the point t0 ∈ J , we show that the familyM := F (Br(J,X))
is equicontinuous at t0, where Br(J,X) := {u ∈ C(J,X) : ‖u‖ ≤ r}.

Let t0 ∈ J , a ≤ t < t0 ≤ T (resp., a ≤ t0 < t < T ) and u ∈ Br(J,X). For

short, denote Φt(s) := 1
s

(
ln s

t

)q−1
. From the representation∫ T

t
Φt(s)f(s, u(s))ds =

∫ t0

t
Φt(s)f(s, u(s))ds+

∫ T

t0

Φt(s)f(s, u(s))ds

(resp.,

∫ T

t0

Φt0(s)f(s, u(s))ds =

∫ t

t0

Φt0(s)f(s, u(s))ds+

∫ T

t
Φt0(s)f(s, u(s))ds ),

we have

|F (u)(t)− F (u)(t0)| ≤ A(t, t0) +B(t, t0), (11)

where

A(t, t0) :=
∣∣∣HD−qt−0 f(t, u(t))

∣∣∣ ≤ C1(‖u‖C(J,X) + 1)(t0 − t)q−p1

≤ C1(r + 1)(t0 − t)q−p1 → 0 as t→ t−0 (independently of u);
(12)

(resp., A(t, t0) ≤ C1(r + 1)(t− t0)q−p1), (13)

and

B(t, t0) :=
1

Γ(q)

∫ T

t0

|Φt(s)− Φt0(s)| |f(s, u(s))|ds

≤ c1

(∫ T

t0

|Φt(s)− Φt0(s)|
1

1−p1 ds

)1−p1

, (14)

where c1 = 1
Γ(q)(‖β1‖

L
1
p1 (J,X)

+1). Noting that |Φt(.)−Φt0(.)|
1

1−p1 ≤ |Φt0(.)|
1

1−p1 ∈

L1(Jt0 ,R+) and |Φt(s) − Φt0(s)| → 0, as t → t−0 , and using Lebesgue’s dom-
inated convergence theorem, we get B(t, t0) → 0 independently of u. Hence,
A(t, t0) +B(t, t0)→ 0 independently of u, as t→ t−0 .
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In case a ≤ t0 < t < T , we have

B(t, t0) :=
1

Γ(q)

∫ T

t
|Φt(s)− Φt0(s)||f(s, u(s))|ds

≤ c1

(∫ T

t
|Φt(s)− Φt0(s)|

1
1−p1 ds

)1−p1

=: c1

(∫ T

a
L(t)(s)

1
1−p1 ds

)1−p1

, (15)

where L(t)(s) := χ(t,T ](s)|Φt(s)− Φt0(s)|. A direct calculation yields

0 ≤
(∫ T

a
L(t)(s)

1
1−p1 ds

)1−p1

≤
(∫ T

t
|Φt(s)|

1
1−p1 ds

)1−p1

=

(∫ T

t

(
1

s

(
ln
s

t

)q−1
) 1

1−p1
ds

)1−p1

≤ c <∞, (16)

where c = (1−p1)1−p1 (T−a)q−p1

aq(q−p1)1−p1 . In addition, for every s ∈ (a, T ), limt→t+0
L(t)(s) =

0. From (15)-(16), using Lemma 3, we get limt→t+0
B(t, t0)→ 0. Thus, A(t, t0) +

B(t, t0)→ 0 as t→ t+0 . Therefore, we conclude that M is equicontinuous.
In addition, we immediately see that M is pointwise bounded by (i). Thus,

applying Arzela-Ascoli theorem we deduce that M is relatively compact.
We now show that F is continuous from C(J,X) to C(J,X). Assume that

{un} ⊂ C(J,X) with un → u. Since

|f(s, un(s))− f(s, u(s))| ≤ |f(s, un(s))|+ |f(s, u(s))|
≤ β1(s) (‖un‖+ 1 + ‖u‖+ 1)

≤ β1(s) (2‖u‖+ 3) ∈ L
1
p1 (J,R+)

and |f(s, un(s))− f(s, u(s))| → 0 as n→∞ for a.e. s ∈ (a, T ), we have

|F (un)(t)− F (u)(t)| ≤ 1

Γ(q)

∫ T

t

∣∣∣∣1s (ln
s

t

)q−1
∣∣∣∣ |f(t, un(t))− f(t, u(t))|ds

≤ c
(∫ T

t
|f(s, un(s))− f(s, u(s))|

1
p1

)p1

≤ c
(∫ T

a
|f(s, un(s))− f(s, u(s))|

1
p1

)p1

→ 0
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(here c = (1−p1)1−p1

Γ(q)aq(q−p1)1−p1 (T − a)q−p1), independently of t, as n→∞. Therefore,

we obtain the continuity and compactness of F . Evaluating (5) and (6) is clear
by using (ii).

Define G,K : C(J,X)→ C(J,X) by

G(u)(t) =H D−q
T−F(t, u(t)),

H(u)(t) =H D−q
T−Lu(t) with a ≤ t < T ;

G(u)(T ) = H(u)(T ) = 0

for u ∈ C(J,X). We prove that G and H are compact in the same way that we
proved that the operator F is compact. Thus, F = H +G is compact. The proof
is complete. J

Lemma 4. (i) If the conditions (f) and (g) hold, then T is α-condensing.

(ii) If the assumptions (F) and (g) are true, then G is α-condensing.

Proof. (i): It is clear that operators U,F,T : C(J,X) → C(J,X) are contin-
uous and bounded. Let N ∈ b(C(J,X)). Consider condition (i) of (g). If (i1) is
true, we get

‖U(x)− U(y)‖ = |g(x)− g(y)|
≤ Kg‖x− y‖ ∀x, y ∈ C(J,X).

Consequently, α(U(N )) ≤ Kgα(N ). Therefore,

α(T(N )) = α (U(N ) + F (N ))

≤ α(U(N )) + α(F (N ))

= α(U(N ))

≤ Kgα(N ).

Hence, T is an α-condensing operator.
If (i2) is true, since g is continuous, it implies that T is continuous by Propo-

sition 4. Let {un} ⊂ N , yn = g(un). Since g and F are compact, we can assume
that yn → y and F (un)→ z, so T (un)→ −y + ξT + z. Therefore T is compact.
Thus, it is α-condensing. Claim (ii) is proven similarly. J

Proposition 5. Assume that the following conditions are satisfied: (f), (g),
cg + C1(T − a)q−p1 < 1, f(J, P ) ⊂ P , L(P ) ⊂ P and −g(u) + ξT ∈ P for all
u ∈ P. We have



156 N.H. Tuan, V.V. Tri

(i) iP(T,Br(J)) = 1 with r > 0 large enough;

(ii) if there exists ξ∗ ∈ P\{0} such that | − g(u) + ξT | ≥ |ξ∗| for all u ∈ P\{0},
then iP(T,Br(J)) = 0 with r > 0 small enough,

where Br(J) = {x ∈ C(J,X) : ‖x‖C(J,X) < r}, C1 = (1−p1)1−p1

Γ(q)aq(q−p1)1−p1 ‖β1‖
L

1
p1 (J,X)

.

Proof. Choose γ0 ∈ (0,∞) such that

c1 := cg + C1(T − a)q−p1 < γ0 < 1.

It is clear that Br(J) is open in C(J,X) and T(P) ⊂ P. To get (i), we will prove
that

ρu 6= T(u) for all (u, ρ) ∈ (∂Br(J) ∩ P)× [1,∞) for sufficiently large r > 0.
(17)

Assume that (17) is false. Then we can choose sequences ρn ≥ 1 and un ∈ P
such that

ρnun = T(un) and ‖un‖ → ∞.

Using Proposition 4, we derive

ρn‖un‖ ≤ ‖T(un)‖
≤ |ξT |+ c1(‖un‖+ 1).

It implies that

ρn ≤
|ξT |+ c1(‖un‖+ 1)

‖un‖
. (18)

Letting n → ∞ in (18), we get a contradiction. Therefore, (17) holds for
r > 0. Thus, by applying Proposition 1, we get iP(T,Br(J)) = 1 for sufficiently
large r > 0.

To obtain (ii) we will show that

ρu 6= T(u) + ρu∗ for all (u, ρ) ∈ (∂Br(J) ∩ P)× [0,∞) with r > 0 small enough,
(19)

where u∗(t) = ξ∗ for all t ∈ J . Assume that (19) is not true. There are sequences
ρn ≥ 0, un ∈ P satisfying

‖un‖ → 0 and un = T(un) + ρnu∗.
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This implies that
un � U(un) + ρnu∗ � U(u∗).

Thus
un(t) ≥1 U(un)(t) + ρnu∗(t) ≥1 −g(un) + ξT ≥1 ξ∗ ∀t ∈ J.

Since P is a normal cone,

‖un‖ ≥ N−1|ξ∗| > 0.

This is impossible, so we obtain (19).
Using Proposition 1, we derive iP(T,Br(J)) = 0 with r > 0 small enough.

The proof is finished. J

Proposition 6. Assume that the following conditions are fulfilled: (F), (g),
F(J, P ) ⊂ P , L(P ) ⊂ P , cg+C0(T −a)q+C2(T −a)q+γ < 1, and −g(u)+ξT ∈ P
for all u ∈ P, where C0 =

‖L‖†
aqΓ(q+1) , C2 =

‖β‖L1,γ (J,X)

aq+γ
Γ(γ+1)

Γ(q+γ+1) . Then

(i) there exists r0 > 0 such that iP(G,Br(J)) = 1 for all r ≥ r0;

(ii) if there exists ξ∗ ∈ P\{0} such that | − g(u) + ξT | ≥ |ξ∗| for all u ∈ P\{0},
then there is r0 > 0 such that iP(G,Br(J)) = 0 with 0 < r ≤ r0.

Proof. Denote

c0 := C0(T − a)q,

c2 := C2(T − a)q+γ .

Choose γ0 satisfying

c† := cg + c0 + c2 < γ0 < 1.

Let ρ ∈ [1,∞) and u ∈ C(J,X). If ρu = G(u), using (6), we arrive at

‖ρu‖ ≤ |ξT |+ cg(‖u‖+ 1) + c0‖u‖+ c2(‖u‖+ 1).

Thus, we get

ρ ≤
|ξT |+ cg + c†‖u‖+ c2

‖u‖
.

From this estimate, we get (17), so we have assertion (i). To obtain assertion (ii),
we make the same argument as in the proof of Proposition 5. J
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3.3. Global/Local solution existence theorems

Theorem 1. Assume (f)-(g) and cg + C1(T − a)q−p1 < 1, where

C1 = (1−p1)1−p1

Γ(q)aq(q−p1)1−p1 ‖β1‖
L

1
p1 (J,X)

. Then Problem (1) has at least one solution

w ∈ C(J,X), and

w(t) = −g(w) + ξT +
1

Γ(q)

∫ T

t

1

s

(
log

s

t

)q−1
f(s, w(s))ds, t ∈ [a, T ).

Furthermore, if there exists ξ∗ ∈ C(J,X)\{0} such that | − g(u) + ξT | ≥ |ξ∗| for
all u 6= 0, then equation (1) has a nontrivial solution in C(J,X).

Proof. It is clear that the assumptions of Proposition 5 are satisfied with P :=
X and P := C(J,X). Therefore, there exists R > 0 satisfying iP(T,BR(J)) = 1.
Applying Proposition 2, we derive Fix(T) 6= ∅. This implies that Problem (1)
has at least one solution u ∈ P. Furthermore, by (ii) of Proposition 5 we can
choose r with 0 < r < R such that iP(T,Br(J)) = 0. Applying Proposition 2
with D1 = Br(J), D2 = BR(J)\Br(J), we see that the problem has a solution u
in D2. The theorem is proved. J

Theorem 2. Assume (F)-(g), and

cg +
‖L‖†

aqΓ(q + 1)
(T − a)q +

‖β‖L1,γ(J,X)

aq+γ
Γ(γ + 1)

Γ(q + γ + 1)
(T − a)q+γ < 1.

Then Problem (2) has at least one solution w ∈ C(J,X), and

w(t) = −g(w) + ξT +H D−q
T−Lw(t) +H D−q

T−F(t, w(t)), t ∈ [a, T ),

where

HD
−q
T−Lw(t) =

1

Γ(q)

∫ T

t

1

s

(
log

s

t

)q−1
Lu(s)ds,

HD
−q
T−F(t, w(t)) =

1

Γ(q)

∫ T

t

1

s

(
log

s

t

)q−1
F(s, u(s))ds.

Furthermore, if there exists ξ∗ ∈ C(J,X)\{0} such that | − g(u) + ξT | ≥ |ξ∗| for
all u 6= 0, then (2) has a nontrivial solution in C(J,X).

Proof. The proof is argued in the same way as the one of Theorem 1, by
checking the assumptions of Proposition 6. J

Remark 1. Assumption (g) can be replaced with the following assumption (g1):
(i): g is Lipschitz with a constant Kg ∈ [0, 1);
(ii): g(0) = 0.
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3.4. Uniqueness of solution

In this section, we establish sufficient conditions for equation (1) to have a
unique solution.

The operator f : J ×X → X is said to be uniformly Lipschitz with respect
to the second variable on J if there exists L > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y| for all t ∈ J, x, y ∈ X. (20)

Theorem 3. Assume that

(i) f satisfies the Lipschitz condition (20), and

(ii) there exists Kg > 0 such that

|g(u)− g(v)| ≤ Kg‖u− v‖ ∀u, v ∈ C(J,X)

and Kg + L(T−a)q

aqΓ(q+1) < 1.

Then, the problem (1) has a unique solution.

Proof. Set

B(r) = {u ∈ C(J,X) : ‖u− T(θ)‖ ≤ r} (r > 0),

where θ is a zero of C(J,X). It is clear B(r) is closed in C(J,X). For u, v ∈ B(r)
(r will be chosen later), we have

|Tu(t)− Tv(t)| ≤ |g(u)− g(v)|+ |Fu(t)− Fv(t)|

≤ Kg‖u− v‖+
1

Γ(q + 1)

∫ T

t
Φt(s) |f(s, u(s))− f(s, v(s))| ds

≤
(
Kg +

L(T − a)q

aqΓ(q + 1)

)
‖u− v‖. (21)

This implies

‖Tu− Tv‖ ≤
(
Kg +

L(T − a)q

aqΓ(q + 1)

)
‖u− v‖.

From (21) with v = θ, we get

‖T(u)− T(θ)‖ ≤
(
Kg +

L(T − a)q

aqΓ(q + 1)

)
‖u− T(θ)‖+ ‖T(θ)‖
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≤
(
Kg +

L(T − a)q

aqΓ(q + 1)

)
r + ‖T(θ)‖. (22)

From the estimate (22), we can choose

r ≥ ‖T(θ)‖

1−
(
Kg + L(T−a)q

aqΓ(q+1)

)
and have T(B(r)) ⊂ B(r). From Banach’s fixed point theorem, it foloows that T
has a unique fixed point in B(c, r). The proof is completed. J

Theorem 4. Assume that the following assumptions are fulfilled:

(i) F satisfies the Lipschitz condition (20), and

(ii) there exists Kg > 0 such that

|g(u)− g(v)| ≤ Kg‖u− v‖ ∀u, v ∈ C(J,X)

and Kg + (‖L‖† + L) (T−a)q

aqΓ(q+1) < 1.

Then, the problem (2) has a unique solution.

Proof. The proof is argued in the same way as the one of Theorem 3 with

B(r) := {u ∈ C(J,X) : ‖u−G(θ)‖ ≤ r} ,

where r > ‖G(θ)‖
1−

(
kg+(‖L‖†+L)

(T−a)q

aqΓ(q+1)

) . J

4. Illustrative examples

This section presents three examples of applying abstract results to final-
value problems that contain functions that observe the state of past solutions.
In the first example, we get the solution to the fractional diffusion equation.
In the second example, we illustrate the case where the problem has a unique
solution. These non-local conditions u(T ) + g(u) + uT , or u(a) + g(u) + ua can
be applied in physics with effective initial conditions that outperform classical

initial conditions. For instance, g(u) =
m∑
j=1

cju(tj), cj (j = 1, ...,m) are constants,

u(t) reflects the state of process u at time t. The third example shows that by
constructing the function space and choosing the appropriate function g, we can
use the abstract results.
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Example 1. Let q ∈ (0, 1), κ > 0, Ω = [0, π], T > 0, K ∈ L2(Ω× Ω,R) with

‖K(., .)‖L2(Ω2,R) <
1

(m+ 1)
.

We consider the problem of finding a number b ∈ [a, T ) and a function w(x, t)
such that

C
H∂

q
tw(x, t) + κ(−∆)σ1 C

H∂
q
tw(x, t) = (−∆)σ2w(x, t) + F (t, w(x, t)),

on [0, π]× [b, T );

w(x, T ) +
m∑
j=0

∫
Ω
K(x, v)w(v, tj , )dv = ξT (x), x ∈ Ω,

(23)

where 0 < σ2 < σ1 < 1, tj = b + j(T−b)
m+1 j = 0, 1, ...,m, C

H∂
q
t u is a fractional

Caputo-Hadamard derivative of u with order q, (−∆)σ is a fractional Laplace
operator of order σ ∈ (0, 1) defined by

(−∆)σu(x) =
σ

Γ(1− σ)

∫ ∞
0

t−(1+σ)(u(x)− v(x, t))dt,

where v(t, x) is a solution of equations

∂

∂t
v −∆v = 0 on [0,∞)× R, and v(0, x) = u(x);

and ∆ is the Laplace operator (see [22, 21] and references therein).
Denote u(t)(x) := w(x, t), X = L2(Ω,R), ξT ∈ X. Then X is a Banach space

with the norm

|ω| =
(∫

Ω
|ω(x)|2dx

) 1
2

and the operator Bσ1 := I + κ(−∆)σ1 has the inverse operator, which is denoted
by B−1

σ1
. The problem (23) can be rewritten as the following equation in X:

{
C
HD

q
a+u(t) = Lu(t) + F(t, u(t)), t ∈ [a, T ) on Ω;

u(T ) = −g(u) + ξT x ∈ Ω,
(24)

where L := B−1
σ1

(−∆)σ2, F(t, u(t)) := B−1
σ1
F (t, u(t)) and

g(u) =
m∑
j=0

Au(tj), Av(.) =

∫
Ω
K(., w)v(w)dw for v ∈ X.



162 N.H. Tuan, V.V. Tri

Let (λ, φλ) ∈ (0,∞) × E be an eigen-pair of (−∆), (i.e., (−∆)φλ = λφλ).
Then ((1 + κλσ1)−1, φλ) is an eigen-pair of B−1

σ1
. Let {en}n≥1 be an orthonor-

mal basis of L2(Ω,R) and {λn}n≥1 be a sequence of the eigenvalues of (−∆)
corresponding to {en}n≥1 with 0 < λ1 < λ2, ..., limλn = ∞. Furthermore, by
representing

v =

∞∑
j=1

〈u, en〉en for v ∈ L2(Ω,R),

we get

B−1
σ1

(−∆)σ2v =
∞∑
j=1

λσ2
j

1 + κλσ1
j

〈v, en〉en.

This implies that there exists C∗ > 0 such that

|B−1
σ1

(−∆)σ2v| ≤ C∗|v| for all v ∈ L2(Ω,R).

Hence, L is bounded.

To illustrate the problem, we consider specific functions below. Let q = 1
3 , γ =

−1
4 . Denote c0 =

‖L‖†
aqΓ(q+1) , c2

‖β‖L1,γ (J,X)

aq+γ
Γ(γ+1)

Γ(q+γ+1) , Kg = π(m+ 1)‖K(., .)‖C(Ω2,R).

Since cg := Kg < 1, there exists b ∈ [a, T ) such that

cg + c0(T − b)q + c2(T − b)q+γ < 1.

Denote

F (t, u(t))(x) =

(
ln
T

t

)− 1
4

(|sin(u(t)(x))|+ 1) , x ∈ [0, π];

β(t) =

(
ln
T

t

)− 1
4

, t ∈ [a, T ).

• Let u, v ∈ C(J,X). Since b = t0 < t1 < ... < tm < T , we have

|g(u)(x)− g(v)(x)| =

∣∣∣∣∣∣
m∑
j=0

∫
Ω
K(x, y)u(tj)(y)dy −

m∑
j=0

∫
Ω
K(x, y)v(tj)(y)dy

∣∣∣∣∣∣
≤

m∑
j=0

∫
Ω
|`(x, y)||u(tj)(y)− v(tj)(y)|dy
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≤
m∑
j=0

(∫
Ω
|K(x, y)|2dy

)1/2

.

(∫
Ω
|u(tj)(y)− v(tj)(y)|2dy

)1/2

≤
m∑
j=1

‖K(x, .)‖L1(Ω,R).|u(tj)− v(tj)|

≤
m∑
j=1

‖K(x, .)‖L1(Ω,R).‖u− v‖C(Jb,X)

≤ (m+ 1)‖K‖L2(Ω2,R)‖u− v‖C(Jb,X).

It follows
|g(u)− g(v)| ≤ (m+ 1)Kg‖u− v‖C(Jb,X),

where Kg = ‖K‖L2(Ω2,R). Thus the condition (g) is satisfied with cg := Kg.
• It is simple to demonstrate that the function F satisfies the condition (i) of

(F).
• Finally, we verify the assumption (ii) on the function (F). Since B−1

σ1
is

bounded, we get

|B−1F (t, u(t))| ≤ C†|F (t, u(t))|.

For t ∈ [b, T ), we get

|F(t, u(t))| ≤ C†|F (t, u(t))|
≤ 2C†β(t)(1 + ‖u‖C(Jb,X)).

Then 2C†β ∈ L1,γ(Jb,R+). The conditions (F)-(g) hold. Using Theorem 2 (with
a replaces by b), we see that the problem (24) has at least one solution in C(Jb, X).

Example 2. Consider the problem of finding w : [a, T ]× [0, π]→ R that satisfies
C
HD

q
T−w(t, x) =

φ(w(t, x))

1 + (T − t)α
, t ∈ J := [a, T );

w(T, x) +
m∑
j=0

∫ π

0
`(x, y)w(tj , y)dy = ξT (x), x ∈ [0, π],

(25)

where φ : R→ R is a Lipschitz function with the coefficient kφ (to be determined
later); `(., .) ∈ L2([0, π]× [0, π],R), 0 < a ≤ t0 < ... < tm < T , m ∈ N, q ∈ (0, 1),
α > 0, and ξT ∈ L2(Ω,R).

Denote Ω = [0, π]. We define the functional space X = L2(Ω,R) with norm

|`| =
(∫

Ω |`(x)|2dx
)1/2

. We define the function u ∈ C(J,X), u : J → X, by

u(t)(x) = w(t, x) (t, x) ∈ J × Ω.
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The source functions fk : J × E → E, f : J ×X → X are defined by

f(t, v)(x) =
φ(v(x))

1 + (T − t)α

for (t, v) ∈ J ×X.
We define g : C(J,X)→ X by

g(u) =

m∑
j=0

Au(tj), where Av(x) =

∫
Ω
K(x, τ)v(τ)dτ.

Then the problem (25) is rewritten in the form (1).
• For u, v ∈ X, we have

|f(t, u)− f(t, v)| = 1

1 + (T − t)α

(∫
Ω
|φ(u(x))− φ(v(x))|2dx

)1/2

≤ kφ|u− v|.

Therefore, f satisfies the condition (i) of Theorem 3 with L = kφ.
• Check the assumption (ii). For u, v ∈ C(J,X), we have

|g(u)(x)− g(v)(x)| =

∣∣∣∣∣∣
m∑
j=0

∫
Ω
`(x, y)u(tj)(y)dy −

m∑
j=0

∫
Ω
`(x, y)v(tj)(y)dy

∣∣∣∣∣∣
≤

m∑
j=0

∫
Ω
|`(x, y)||u(tj)(y)− v(tj)(y)|dy

≤
m∑
j=0

(∫
Ω
|`(x, y)|2dy

)1/2

.

(∫
Ω
|u(tj)(y)− v(tj)(y)|2dy

)1/2

≤ (m+ 1)‖`‖L2(Ω2,R)‖u− v‖.

This means
|g(u)− g(v)| ≤ (m+ 1)Kg‖u− v‖,

where Kg = ‖`‖L2(Ω2,R). We can choose ` and φ satisfying

‖`‖L2(Ω2,R) =

(∫
Ω2

|K(x, y)|2dxdy
) 1

2

<
1

m+ 1
and

Kg +
kφ(T − a)q−α

aqΓ(q + 1)
< 1.

Then all assumptions of Theorem 3 are fulfilled with cg := Kg, so the equation
(25) has a unique solution.
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Example 3. Let T > a > 0. Consider the following infinite system of fractional
equations:

C
H∂

2
3

T−wn(t) =
sin(wn(t)) + 1

n(T − t)
1
3

for t ∈ [a, T ) (26)

wn(T ) =
T

n
for all n = 1, 2, ..., (27)

where C
H∂

q
T− is a fractional Caputo-Hadamard derivative of order q. We define

the Banach space

X =
{
x = (x1, x2, ....) ∈ R∞ : lim

n→∞
xn = 0

}
with the norm |x| = sup

n≥1
|xn|.

For n ≥ 1, un ∈ C(J,R), u ∈ C(J,X), fn : J × R → R and f : J ×X → X we
define

u(t) = (u1(t), u2(t), ....);

fn(t, x) =
sin(x) + 1

n(T − t)
1
3

;

f(t, w) = (f1(t, w1), f2(t, w2), ...) .

For u ∈ C(J,X), we define g(u) = 0 (zero of X), and ξT =
(
T
1 ,

T
2 , ...

)
∈ X.

Then the system of equations (26)-(27) is equivalent to fractional equation
(1). Since

|fn(t, un(t))| ≤ | sin(un(t))|+ 1

n(T − t)
1
3

≤ |un(t)|+ 1

n(T − t)
1
3

≤
(‖u‖C(Jc,X) + 1)

n(T − t)
1
3

≤ 2

n(T − t)
1
3

→ 0, as n→∞ for all t ∈ Jc, c ∈ [a, T ),

f(t, u(t)) ∈ X and

|f(t, u(t))| = sup
n≥1
|fn(t, un(t))|

≤
2(‖u‖C(Jc,X) + 1)

(T − t)
1
3

for all t ∈ Jc, c ∈ [a, T ).
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Hence, the conditions (f) and (g) are satisfied with q = 2
3 , p1 = 1

2 , β1(t) = 2

(T−t)
1
3

.

We can choose c ∈ [a, T ) such that

cg +
(1− p1)1−p1

Γ(q)aq(q − p1)1−p1
‖β1‖

L
1
p1 (J,X)

(T − c)q−p1 < 1.

The system (26)-(27) has a local solution on [c, T ] thanks to Theorem 1.

5. Conclusion

The fundamental issue with fractional operators and their generalized ver-
sions is to correctly define them in the appropriate function space. In this paper,
we define general function spaces by connecting Lebesgue integrals and Bochner
integrals. In these spaces, the continuity of the absolute solution as well as its
derivative is not required. We get the existence of global solutions of differential
equations with fractional order; however, these solutions do not have good prop-
erties such as uniqueness. The problems are studied under assumptions that are
not too strict.
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