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Modified Inertial Method for Solving Bilevel Split
Quasimonotone Variational Inequality and Fixed
Point Problems

R. Maluleka, G.C. Ugwunnadi*, M. Aphane, H.A. Abass

Abstract. The bilevel split variational inequality problem (BSVIP), which includes the
VIP of quasimonotone mapping and the fixed point problem of demimetric mapping as
lower-level problems and the upper-level problem of a strongly monotone operator in
real Hilbert spaces, is solved in this paper using a modified algorithm that combines the
inertial method and the contraction projection method. We establish a strong conver-
gence under some appropriate parameter assumptions. Finally, a numerical experiment
is given to demonstrate the effectiveness of the suggested approach.
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1. Introduction

Let H represent a real Hilbert space. The symbols ⟨., .⟩ and ∥.∥ are used to
denote its inner product and norm, respectively. Let A : H → H be any operator,
and C be a nonempty, closed and convex subset of H. For any given mapping
S : H → H, let its set of fixed points be denoted by F (S) = {Sx = x, x ∈ H}.
The classical variational inequality problem (VIP) of Fichera [10, 11], is stated
as follows: find a point z ∈ C such that

⟨Az, x− z⟩ ≥ 0, for all x ∈ C. (1)

We denote the solution set of the VIP (1) by VI(C,A). Numerous mathematical
and applied sciences use the VIP (1) as a fundamental concept; its theoretical and
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algorithmic foundations, as well as its applications, have been extensively studied
in the literature and are still the subject of active research. The extragradient
method, developed by Korpelevich [16] in 1976, is one of the most widely used
techniques for resolving the VIP (1). The method is formulated as follows: For
any point x0 ∈ C, the sequence {xn} is defined by{

yn = PC(xn − λAxn),
xn+1 = PC(xn − λAyn),

(2)

where A : C → Rn is monotone and L-Lipschitz continuous with L > 0 and
λ ∈ (0, 1/L), PC is a metric projection from H onto C. If the solution set
VI(C,A) of (2) is nonempty, then the iterative sequence {xn} generated by the
algorithm (2) converges weakly to a point in VI(C,A). Each iteration of the extra-
gradient method (2) requires the computation of two projections onto the closed
convex set C. If C is a general closed convex set, this may have a significant
impact on the algorithm’s effectiveness. It is also important to note that the
mapping in the extragradient method requires knowledge of the Lipschitz con-
stant. Lipschitz constants are, regrettably, frequently unknown or challenging to
accurately estimate. Many scholars have paid close attention to Korpelevich’s
extragradient method, (2), and have greatly improved it in various ways (see, for
example, [1, 2, 12, 13, 16, 17, 18, 24, 25, 27] and the references therein). Many
authors have recently suggested and examined a number of iterative approaches
to solving the VIP (1). In order to update the step size in each iteration, in
2021, Tan et al. [23] studied the inertial modified extragradient projection and
contraction method with the hybrid steepest descent method with Armijo-type
line search as follows:

x0, x1 ∈ H
wn = xn + θn(xn − xn−1)
yn = PC(wn − λnAwn)
zn = PTn(wn − ρλnηnAyn)
Tn = {x ∈ H : ⟨wn − λnAwn − yn, x− yn⟩ ≤ 0}
dn = (wn − yn)− λn(Awn −Ayn)

ηn := ⟨wn−yn,dn⟩
∥dn∥2

xn+1 = zn − αnσSzn, ∀n ≥ 1,

(3)

where λn is chosen to be largest λ ∈ {δ, δξ, δξ2, · · · }, δ, ξ ∈ (0, 1), A is Lipschitz
continuous and pseudomonotone, S is Lipschitz and α-strongly monotone and
Lipschitz continuous, {αn} is a control sequence in (0, 1) with some condition.
They demonstrated that the sequence produced by (3) exhibits strong conver-
gence under appropriate parameter conditions. We observe that the Armijo-type
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line search criteria are used by the algorithm (3) proposed by Thong and Hieu [25]
to update the step size of each iteration. It is well known that a line search ap-
proach would necessitate numerous additional computations and further decrease
the computational effectiveness of the employed method.

Next, let us also assume that C and Q are nonempty, closed, and convex
subsets of their respective Hilbert spaces, H1 and H2. Let A : C → H1 and
G2 : Q → H2 be any nonlinear mappings, G1 : H1 → H1 be a β−strongly
monotone and L−Lipschitz continuous operator on C, and B : H1 → H2 be a
bounded and linear operator. After that, the ”bilevel split variational inequality
problem” (BSVIP) was introduced by Ani et al. [3] as follows:

Find z ∈ Γ such that ⟨G1z, x− z⟩ ≥ 0, for all x ∈ Γ, (4)

where Γ := {z ∈ V I(C,A) : Bz ∈ V I(Q,G2)} is the solution set of the following
split variational inequality problem (SVIP) introduced by Censor et al. [12]:

Find z ∈ C that solves ⟨A(z), x− z⟩ ≥ 0, ∀x ∈ C (5)

such that

x∗ = Bz ∈ Q solves ⟨G2(x
∗), y − x∗⟩ ≥ 0, ∀y ∈ Q, (6)

and V I(C,A) and V I(Q,G2) denote the solution sets of the variational inequali-
ties (5) and (6), respectively. Censor et al. [12] proposed and studied the following
method for solving the SVIP (5)-(6): For x1 ∈ H1,

xn+1 = PC(I − λA)(xn + τB∗(PQ(I − λG2)− I)Bxn), n ≥ 1, (7)

where A,G2 are β1, β2-inverse strongly monotone and λ, τ satisfy some conditions.
They proved weak convergence of the sequence generated by (7) to a solution of
problem (5)-(6). In order to study traffic equilibrium control issues and partial
differential equations, a powerful methodology known as the SVIP (5)-(6) which
incorporates the classical variational inequality problem (VIP) (1) has been used;
for more information, see [8, 9]. The split feasibility problem (SFP), developed
and studied by Censor and Elfving [6], is a special case of the SVIP that arises
when A = G2 = 0. It has been studied and applied in a variety of scientific
fields, including phase retrieval, medical image reconstruction, signal processing,
and radiation therapy treatment planning (for more information, see [5, 7, 26].
Additionally, it is well known that the fixed point problem and problem (6) are
equivalent in the sense that:

z ∈ Q if and only if z = PC(z − λG2z), (8)
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where λ > 0 and PC is the metric projection of H1 onto C. Suppose S(z) :=
PQ(I − λG2)z, λ > 0. Then, from (8), we get V I(Q,G2) = F (S). In this
regard, BSVIP was defined by Ugwunnadi et al. [28] as follows: Suppose that
A : H1 → H1 is pseudomonotone and L-Lipschitz continuous, F : H1 → H1 is
β−strongly monotone and L−Lipschitz continuous, B : H1 → H2 is a bounded
linear operator with B ̸= 0 and S : H2 → H2 is a κ-generalized demimetric
mapping with κ > 0. Then

find z∗ ∈ Γ such that ⟨F (z∗), z − z∗⟩ ≥ 0, ∀z ∈ Γ, (9)

where Γ := {z∗ ∈ V I(C,A) : Bz∗ ∈ F (S)}. They proposed a modified projec-
tion and contraction method and showed that the sequence it produces strongly
converges to a distinct BSVIP (9) solution under the assumption of an operator
norm on the given step size.
Question: How can BSVIP and related results be solved using the modified
algorithm (3) in such a way that strong convergence is achieved without the use
of operator norms or Armijo-type line search criteria?

Inspired and motivated by the literature findings, in this paper, we provide
a positive response to the aforementioned query and investigate strong conver-
gence for the solution of the bilevel split variational inequality problem (BSVIP)
in real Hilbert spaces using Lipschitz-continuous and quasimonotone mapping,
demimetric mapping, as lower-level problems and the upper-level problem of a
strongly monotone operator. Using the inertial modified extragradient projection
and contraction method, we demonstrate that the proposed algorithm strongly
converges to a particular point in the solution set of BSIVP under a number
of suitable conditions imposed on the parameters. Finally, we demonstrate the
effectiveness of our findings through a number of numerical experiments.

2. Preliminaries

Throughout this section, the symbols ” → ” and ” ⇀ ” represent the strong
and weak convergences, respectively.

Let C be a closed convex subset of a real Hilbert space H. The metric
projection from H onto C is the mapping PC : H → C such that for each x ∈ H,
there exists a unique point z = PC(x) with

∥x− z∥ = inf
y∈C

∥x− y∥.

Lemma 1. Let x ∈ H and z ∈ C be any point. Then we have

(i) z = PC(x) if and only if the following relation holds:

⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C. (10)
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(ii) For all x, y ∈ H, we have

⟨PC(x)− PC(y), x− y⟩ ≥ ∥PC(x)− PC(y)∥2.

(iii) For x ∈ H and y ∈ C

∥y − PC(x)∥2 + ∥x− PC(x)∥2 ≤ ∥x− y∥2.

The mapping T is called

(1) L-Lipschitz continuous with L > 0 if for all x, y ∈ C,

∥Tx− Ty∥ ≤ L∥x− y∥.

If L = 1, then T is called a nonexpansive mapping.

(2) quasi-nonexpansive if ∥Tx− y∥ ≤ ∥x− y∥ for all x ∈ C, y ∈ F (T ),

(4) τ -demicontractive if F (T ) ̸= ∅ and there exists k ∈ [0, 1) such that

∥Tx− y∥2 ≤ ∥x− y∥2 + τ∥x− Tx∥2, for all x ∈ C, y ∈ F (T ).

(6) τ -demimetric [20] if F (T ) ̸= ∅ and there exists τ ∈ (−∞, 1) such that for
any x ∈ C and y ∈ F (T ), we have

⟨x− y, x− Tx⟩ ≥ 1− τ

2
∥x− Tx∥2.

Lemma 2 ([14]). Let T : C → H be a nonexpansive mapping. Then T is
demiclosed on C in the sense that if {xn} converges weakly to x ∈ C and {xn −
Txn} converges strongly to 0, then x ∈ F (T ).

Lemma 3. [22] Let H be a real Hilbert space. Then for all x, y ∈ H and α ∈ R,
the following hold:

(1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(2) ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

Let us review some important nonlinear mappings (or operators) and their
relationship in convex analysis. For any x, y ∈ H, the operator A : H → H is
said to be:

(a) η−strongly monotone, if there exists η > 0 such that

⟨Ax−Ay, x− y⟩ ≥ η||x− y||2;
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(b) monotone, if

⟨Ax−Ay, x− y⟩ ≥ 0.

(c) pseudomonotone, if

⟨Ax, y − x⟩ ≥ 0 ⇒ ⟨Ay, y − x⟩ ≥ 0;

(d) quasimonotone, if

⟨Ax, x− y⟩ > 0 ⇒ ⟨Ay, x− y⟩ ≥ 0.

It is obvious that (a) ⇒(b)⇒(c)⇒ (d). But the converses are not generally true.

Lemma 4. [15, 30] Let C be a nonempty, closed and convex subset of a Hilbert
space H and F : H → H be an L-Lipschitzian and quasimonotone operator. Let
y ∈ C. If for some x∗ ∈ C, we have ⟨F (y), x∗ − y⟩ ≥ 0, then at least one of the
following must hold:

⟨F (x∗), x∗ − y⟩ ≥ 0 or ⟨F (y), z∗ − y⟩ ≤ 0 ∀z∗ ∈ C.

Lemma 5. ([21]) Let H be a Hilbert space and C be a nonempty, closed and
convex subset of H. Let k ∈ (−∞, 0) and T be a τ−demimetric mapping of C
into H such that F (T ) ̸= ∅. Then, F (T ) is closed and convex.

Lemma 6. [3] Let H be a real Hilbert space and F : H → H be a β−strongly
monotone and L−Lipschitz continuous mapping on H. If α ∈ (0, 1), η ∈ [0, 1−α]

and µ ∈
(
0, 2β

L2

)
, then for all x, y ∈ H, we have

∥[(1− η)x− αµF (x)]− [(1− η)y − αµF (y)]∥ ≤ (1− η − αδ)∥x− y∥,

where δ = 1−
√

1− µ(2β − µL2) ∈ (0, 1].

Lemma 7. [19] Let {an} be a sequence of nonnegative real numbers, {αn} be a
sequence of real numbers in (0, 1) with condition

∞∑
n=1

αn = ∞

and {bn} be a sequence of real numbers. Assume that

an+1 ≤ (1− αn)an + αnbn,∀n ≥ 1.

If lim sup
k→∞

bnk
≤ 0 for every subsequence {ank

} of {an} satisfying the condition

lim inf
k→∞

(ank+1 − ank
) ≥ 0,

then lim
n→∞

an = 0.
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3. Main Results

Assumption 1. Let H1 and H2 be real Hilbert spaces and C and Q be nonempty
closed and convex subsets of H1 and H2, respectively. Suppose the following
conditions are satisfied:

(C1) A : H1 → H1 is a quasimonotone and L1-Lipschitz continuous with L1 > 0.
Also, A is sequentially weakly continuous, i.e., each sequence {xn} ⊂ C
converging weakly to x implies {A(xn)} converging weakly to {A(x)}.

(C2) B : H1 → H2 is a bounded linear operator with B ̸= 0 and S : H2 → H2 is
a ν−demimetric mapping and demiclosed at zero.

(C3) G : H1 → H1 is a β−strongly monotone and L2−Lipschitz continuous
operator on H1 with L2 > 0 such that δ = 1 −

√
1− γ(2β − γL2

2), where

γ ∈
(
0, 2β

L2
2

)
.

(C4) {µn} is a positive sequence with µn = ◦(αn), {βn} ⊂ (a, 1 − αn) for some

a > 0 and {αn} ⊂ (α, 1), where α > 0, lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞.

(C5) Denote the set of common solutions by Γ := {z ∈ V I(C,A) : Bz ∈ F (S))},
where z is a unique solution of V I(Γ, G).

Algorithm 1. Initialization: Choose θ > 0, λ > 0, µ ∈ (0, 1), ρ ∈ (0, 2). Let
x0, x1 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step 1. Given the iterates xn−1 and xn for each n ≥ 1, θ > 0, choose θn such that
0 ≤ θn ≤ θ̄n, where

θ̄n =


min{θ, µn

∥xn−xn−1∥}, if xn ̸= xn−1,

θ, otherwise.

(11)

Step 2. Compute 
yn = xn + θn(xn − xn−1),
un = (yn − λnB

∗(I − S)Byn),
wn = PC(un − τnAun),

(12)

where the steps size λn and τn are chosen as follows:

0 < ϵ ≤ λn ≤ (1− τ)∥Byn − SByn∥2

∥B∗(Byn − SByn)∥2
− ϵ, (13)
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if Byn ̸= SByn; otherwise λn = λ and

τn+1 =

{
min

{
µ∥un−wn∥
∥Aun−Awn∥ , τn

}
, ifAun ̸= Awn.

τn, otherwise
(14)

Step 3. Compute {
vn = PTn(un − ρτnηn(Awn)),
xn+1 = βnxn + (1− βn)vn − αnσGvn, n ∈ N, (15)

where Tn := {z ∈ H1 : ⟨un −Aun −wn, z −wn⟩ ≤ 0} and ηn := ⟨un−wn,dn⟩
∥dn∥2 ,

dn = un − wn − τn(Aun −Awn).
Set n := n+ 1 and return to Step 1.

Lemma 8. Let C and Q be nonempty closed and convex subsets of real Hilbert
spaces H1 and H2, respectively. Suppose conditions (C1) to (C5) are satisfied.
Let {xn}∞n=1 be a sequence generated by Algorithm 1. Then {xn}∞n=1 is bounded.

Proof. Let p ∈ Γ. By (yn) in (12) of Step 2, we get

∥yn − p∥ = ∥xn − p+ θn(xn − xn−1)∥
≤ ∥xn − p∥+ θn∥xn − xn−1∥

= ∥xn − p∥+ αn.
θn
αn

∥xn − xn−1∥.

But from (11) in Algorithm 1, with xn ̸= xn−1, θn ≤ θ̄n ≤ µn

∥xn−xn−1∥ for all n ≥ 1,

that is θn ≤ µn

∥xn−xn−1∥ . Then from (C4), using the fact that µn = ◦(αn), we get

θn
αn

∥xn − xn−1∥ ≤ µn

αn
→ 0 as n → ∞. (16)

Hence, the sequence
{

θn
αn

∥xn−xn−1∥
}
is bounded and so there exists a constant

M > 0 such that θn
αn

∥xn − xn−1∥ ≤ M for all n ̸= 1. Thus,

∥yn − p∥ ≤ ∥xn − p∥+ αnM. (17)

By definition of (un) in (12) and step size λn in (13), we get

∥un − p∥2 = ∥yn − λnB
∗(I − S)Ayn − p∥2

= ∥yn − p∥2 − 2λn⟨yn − p,B∗((I − S))Byn⟩
+∥λnB

∗(I − S)Byn∥2
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= ∥yn − p∥2 − 2λn⟨Byn −Bp, (I − S)Byn⟩
+∥λnB

∗(I − S)Byn∥2

≤ ∥yn − p∥2 − λn(1− τ)∥Byn − SByn∥2

+λ2
n∥B∗(I − S)Byn∥2

= ∥yn − p∥2 − λn

[
(1− τ)∥Byn − SByn∥2 (18)

−λn∥B∗(Byn − SByn)∥2
]

≤ ∥yn − p∥2.

This implies
∥un − p∥ ≤ ∥yn − p∥ ≤ ∥xn − p∥+ αnM. (19)

Next, since p ∈ Γ ⊂ C, from (12) we have wn ⊂ C. Then

⟨Ap,wn − p⟩ ≥ 0, (20)

and with A being a mapping on C, by Lemma 4, we have

⟨Awn, wn − p⟩ ≥ 0. (21)

Then

⟨Awn, vn − p⟩ = ⟨Awn, vn − wn⟩+ ⟨Awn, wn − p⟩
≥ ⟨Awn, vn − wn⟩. (22)

By definition of Tn in Algorithm 1, we get vn ∈ Tn. Thus

⟨un − τnAun − wn, vn − wn⟩ ≤ 0,

which implies

⟨dn, vn − wn⟩ = ⟨un − wn − τn(Aun −Awn), vn − wn⟩
= ⟨un − τnAun − wn, vn − wn⟩+ τn⟨Awn, vn − wn⟩
≤ τn⟨Awn, vn − wn⟩. (23)

Combining (22) and (23), we get

⟨dn, vn − un⟩+ ⟨dn, un − wn⟩ = ⟨dn, vn − wn⟩
≤ τn⟨Awn, vn − p⟩. (24)

Using (15), (24) and the fact that then Projection mapping is firmly nonexpan-
sive, by Lemma 1(ii), we get

2∥vn − p∥2 ≤ 2⟨un − p− ρτnηnAwn, vn − p⟩
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= ∥vn − p∥2 + ∥un − p− ρτnηnAwn∥2 − ∥vn − un + ρτnηnAwn∥2

= ∥vn − p∥2 + ∥un − p∥2 − ∥vn − yn∥2 − 2ρτnηn⟨Awn, un − p⟩
−2ρτnηn⟨Awn, vn − un⟩

= ∥vn − p∥2 + ∥un − p∥2 − ∥vn − un∥2 − 2ρτnηn⟨Awn, vn − p⟩
≤ ∥vn − p∥2 + ∥un − p∥2 − ∥vn − un∥2 − 2ρηn⟨dn, vn − yn⟩

−2ρηn⟨dn, un − wn⟩
≤ ∥vn − p∥2 + ∥un − p∥2 − ∥vn − un∥2 + 2ρηn⟨dn, un − vn⟩ − 2ρη2n∥dn∥2

= ∥vn − p∥2 + ∥un − p∥2 − ∥vn − un∥2 + ρ2η2n∥dn∥2 − 2ρη2n∥dn∥2

+∥vn − un∥2 − ∥un − vn − ρηndn∥2.

Thus

∥vn − p∥2 ≤ ∥un − p∥2 + ρ2η2n∥dn∥2 − 2ρη2n∥dn∥2

−∥un − vn − ρηndn∥2. (25)

And

⟨dn, un − wn⟩ = ∥un − wn∥2 − τn⟨Aun −Awn, un − wn⟩
≥ ∥un − wn∥2 − τn∥Aun −Awn∥∥un − wn∥

≥ ∥un − wn∥2 −
τnµ

τn+1
∥un − wn∥2

=
(
1− τnµ

τn+1

)
∥un − wn∥2.

Since

∥dn∥ ≤ ∥yn − wn∥+ τn∥Ayn −Awn∥

≤ ∥yn − wn∥+
τn
τn+1

µ∥Ayn −Awn∥

=
(
1 +

τn
τn+1

µ
)
∥yn − wn∥,

we have

η2n∥dn∥2 = ⟨dn, un − wn⟩ ·
⟨dn, un − wn⟩

∥dn∥2

≥
(τn+1 − τnµ

τn+1 + τnµ

)2
∥un − wn∥2. (26)

Combining (25) and (26), we get

∥vn − p∥2 ≤ ∥un − p∥2 − ∥un − vn − ρηndn∥2
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−ρ(2− ρ)
(τn+1 − τnµ

τn+1 + τnµ

)2
∥un − wn∥2. (27)

Therefore

∥vn − p∥ ≤ ∥un − p∥. (28)

It follows from (19) that

∥vn − p∥ ≤ ∥xn − p∥+ αnM. (29)

Hence, using definition of (xn+1), Lemma 6 and (29), we get

∥xn+1 − p∥ = ∥[(1− βn)vn − αnσG(vn)]− [(1− βn)p− αnσG(p)]

+βnxn − p]− αnσG(p)∥
≤ ∥[(1− βn)vn − αnσG(vn)]− [(1− βn)p− αnσG(p)]∥

+βn∥xn − p∥+ αnσ∥G(p)∥
≤ (1− βn − αnδ)∥vn − p∥+ βn∥xn − p∥+ βnσ∥G(p)∥
≤ (1− βn − αnδ)∥vn − p∥+ βn∥xn − p∥+ βnσ∥G(p)∥
≤ (1− βn − αnδ)[∥xn − p∥+ αnM ] + βn∥xn − p∥+ βnσ∥G(p)∥
≤ (1− αnδ)∥xn − p∥+ αn[σ∥G(p)∥+M ]

≤ (1− αnδ)∥xn − p∥+ αnδ[σ∥G(p)∥+M ]

δ
≤ max{∥xn − p∥, δ−1[σ∥G(p)∥+M ]}.

Thus, by induction for all n ≥ 1

∥xn − p∥ ≤ max{∥x1 − p∥, δ−1[σ∥G(p)∥+M ]}.

Hence {xn} is bounded. It follows that {yn}, {un} and {vn} are all also bounded.
◀

Lemma 9. (See Lemma 3.6 in [29]) Let {wn} and {un} be sequences generated by
Algorithm 1 with conditions (C1)-(C4) in Assumption 1. Suppose there exist the
subsequences {wns} of {wn} and {uns} of {un} such that {uns} converges weakly
to z ∈ H1 and lim

s→∞
∥wns − uns∥ = 0. Then z ∈ V I(C,A).

Lemma 10. Let {xn} be a sequence generated by Algorithm 1 such that Assump-
tion 1 holds. Then for any p ∈ Γ, the following inequality holds:

∥xn+1 − p∥2 ≤ (1− αnδ)∥xn − p∥2

+αnδ[δ
−1{ θn

αn
∥xn − xn−1∥M1 + 2σ⟨G(p), p− xn+1⟩}]. (30)
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Proof. Let p ∈ Γ. Then, by Lemma 6 and (C3), we get

∥xn+1 − p∥2 = ∥[(1− βn)vn − αnσG(vn) + βnxn − p∥2

= ∥[(1− βn)vn − αnσG(vn)]− [(1− βn)p− αnσG(p)]

+βnxn − p)− αnσG(p)∥2

≤ ∥[(1− βn)vn − αnσG(vn)]− [(1− βn)p− αnσG(p)]

+βnxn − p)∥2 + 2αnσ⟨G(p), p− xn+1⟩
≤ {∥[(1− βn)vn − αnσG(vn)]− [(1− βn)p− αnσG(p)]∥

+βn∥xn − p∥}2 + 2αnσ⟨G(p), p− xn+1⟩
≤ {(1− βn − αnδ)∥vn − p∥+ βn∥xn − p∥}2

+2αnσ⟨G(p), p− xn+1⟩
≤ (1− βn − αnδ)∥vn − p∥2 + βn∥xn − p∥2 (31)

+2αnσ⟨G(p), p− xn+1⟩.

We deduce from stepsize λn in (13) that

ϵ2∥A∗(yun − SByn)∥2 < λnϵ∥B∗(Byn − SByn)∥2

≤ λn[(1− τ)∥Byn − SByn∥2 − λn∥B∗(1− S)Byn∥2]. (32)

Thus, combining (19), (30) and (32), we get

∥vn − p∥2 ≤ ∥yn − p∥2 − ϵ2∥A∗(Byn − SByn)∥2 − ∥un − vn − ρηndn∥2

−ρ(2− ρ)
(τn+1 − τnµ

τn+1 + τnµ

)2
∥un − wn∥2. (33)

And from definition of (yn) in (12), we have

∥yn − p∥2 = ∥xn + θn(xn − xn−1)− p∥2

= ∥xn − p∥2 + 2θn⟨xn − p, xn − xn−1⟩+ θ2n∥xn − xn−1∥2

≤ ∥xn − p∥2 + 2θn∥xn − p∥∥xn − xn−1∥+ θ2n∥xn − xn−1∥2

≤ ∥xn − p∥2 + θn∥xn − xn−1∥[2∥xn − p∥+ θn∥xn − xn−1∥]
≤ ∥xn − p∥2 + θn∥xn − xn−1∥M1, (34)

for some constant M1 > 0. Combining (32), (33) and (34), we get

∥xn+1 − p∥2 ≤ (1− αnδ)∥xn − p∥2 + θn∥xn − xn−1∥M1 + 2αnσ⟨G(p), p− xn+1⟩

−(1− βn − αnδ)
[
ϵ2∥B∗(Byn − SByn)∥2
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−∥un − vn − ρηndn∥2 − ρ(2− ρ)
(τn+1 − τnµ

τn+1 + τnµ

)2
∥un − wn∥2

]
(35)

≤ (1− αnδ)∥xn − p∥2 + αnδ
(
δ−1[θn/αn∥xn − xn−1∥M1

+2σ⟨G(p), p− xn+1⟩]
)
.

This completes the proof. ◀

Theorem 1. Let Assumption 1 hold. Then, the sequence {xn} generated by
Algorithm 1 converges strongly to an element z ∈ Γ, which is also a unique
solution of the variational inequality problem

⟨Gz, p− z⟩ ≥ 0 for all p ∈ Γ. (36)

Proof. Let p ∈ Γ. Then by Lemmas 6 and 10, we only need to show that

lim sup
s→∞

⟨G(p), p− xns+1⟩ ≤ 0

for every subsequence {∥xns − p∥} of {∥xn − p∥} satisfying

lim inf
s→∞

(∥xns+1 − p∥ − ∥xns − p∥) ≥ 0.

Now, let {∥xns − p∥} be a subsequence of {∥xn − p∥} such that

lim inf
s→∞

(∥xns+1 − p∥ − ∥xns − p∥) ≥ 0.

Then, since {∥xns+1 − p∥ + ∥xns − p∥} is bounded, there exists greatest lower
bound K ≥ 0 such that

lim inf
s→∞

(∥xns+1 − p∥2 − ∥xns − p∥2) = lim inf
s→∞

{(∥xns+1 − p∥+ ∥xns − p∥)

×(∥xns+1 − p∥ − ∥xns − p∥)}
≥ Klim inf

s→∞
{(∥xns+1 − p∥ − ∥xns − p∥)}

≥ 0. (37)

From (35) and (37), we obtain

0 < ϵ2∥B∗(Byn − SByn)∥2 + ∥un − vn − ρηndn∥2

+ρ(2− ρ)
(τn+1 − τnµ

τn+1 + τnµ

)2
∥un − wn∥2

≤ −(∥xn+1 − p∥2 − ∥xn − p∥2)
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+αnδ
(
δ−1[θn/αn∥xn − xn−1∥M1

+2σ⟨G(p), p− xn+1⟩]− ∥xn − p∥2
)
.

By taking limsup as s → ∞ and using (37), we obtain

0 < lim sup
s→∞

(
ϵ2∥B∗(Byns − SByns)∥2 + ∥uns − vns − ρηndns∥2

+ρ(2− ρ)
(τns+1 − τnsµ

τns+1 + τnsµ

)2
∥uns − wns∥2

)
≤ −lim inf

s→∞
(∥xns+1 − p∥2 − ∥xns − p∥2)

≤ 0. (38)

This demonstrates that

lim
s→∞

(
ϵ2∥B∗(Byns − SByns)∥2 + ∥uns − vns − ρηndns∥2

+ρ(2− ρ)
(τns+1 − τnsµ

τns+1 + τnsµ

)2
∥uns − wns∥2

)
= 0.

Thus, 
lim
s→∞

∥B∗(Byns − SByns)∥ = 0,

lim
s→∞

∥uns − vns − ρηndns∥ = 0,

lim
s→∞

∥uns − wns∥ = 0.

(39)

Since S is a τ−demimetric mapping, B is a linear operator and by boundedness
of {yn} there exists M > 0, for Byn ̸= Syn we have

0 <
1− τ

2
∥Byn − S(Byn)∥2 ≤ ⟨Byn −Bp,BynSByn⟩

= ⟨yn − p,B∗(BynSByn)⟩
≤ ∥yn − p∥∥B∗(Byn − S(Byn))∥
≤ M∥B∗(Byn − S(Byn))∥.

It follows from (39) that

0 <
1− τ

2
∥Byns − S(Byns)∥2 ≤ M∥B∗(Byns − S(Byns))∥ → 0 as s → ∞.

Hence

lim
s→∞

∥Byns − S(Byns)∥ = 0. (40)
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From (13), we know that 0 < ϵ ≤ λn for all n ≥ 1. Then with un = yn−λnB
∗(I−

S)Byn and (39), we get

lim
s→∞

∥uns − yns∥ = 0. (41)

And combining (39) with (41), we get

lim
s→∞

∥wns − yns∥ = 0. (42)

Furthermore, from (12) we get

∥yns − xns∥ =
θns

αns

∥xns − xns−1∥ → 0 (43)

as s → ∞, and it follows from (41) that

∥wns − xns∥ ≤ ∥wns − yns∥+ ∥yns − xns∥ → 0 (44)

as s → ∞. Thus, combining (39) and (44), we get

lim
s→∞

∥uns − xns∥ = 0. (45)

And, we know that

∥un − vn∥ ≤ ∥un − vn − ρηndn∥+ ρηn∥dn∥

≤ ∥un − vn − ρηndn∥+ ρ · ⟨un − wn, dn⟩
∥dn∥

≤ ∥un − vn − ρηndn∥+ ρ∥un − wn∥.

Thus,
∥uns − vns∥ ≤ ∥uns − vns − ρηnsdns∥+ ∥uns − wns∥.

With this and (39), we get

lim
s→∞

∥uns − vns∥ = 0. (46)

And with ∥vn − xn∥ ≤ ∥vn − un∥+ ∥un − xn∥, it follows from (45) and (46) that

lim
s→∞

∥vns − xns∥ = 0. (47)

From (15) we have

∥xn+1 − xn∥ ≤ (1− βn)∥vn − xn∥+ αn∥σGvn∥
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It follows from (C4) and (47) that

lim
s→∞

∥xns+1 − xns∥ = 0. (48)

Furthermore, since {xns} is bounded, there exists a subsequence {xnst
} of {xnt}

such that {xnst
} converges weakly to z in H1 as t → ∞. From (45), we know that

{unks
} converges weakly to z ∈ H1, thus with (39), we conclude by Lemma 9 that

z ∈ V I(C,A). Also, from (43), we have ynst
⇀ z. Since B is bounded and linear,

we get Bynst
⇀ Bz ∈ H2 and from (40) we know that lim

s→∞
∥Byns − SByns∥ = 0.

With S been demicclosed at zero, we have Bz = SBz, that is z ∈ B−1F (S).
Therefore, z ∈ Γ = V I(C,A)∩B−1F (S). Following that, we demonstrate that z
is a unique solution to the variational inequality problem (36). With respect to
(15), we have

G(vn) =
1

σαn

(
xn − xn+1 + (1− βn)(vn − xn)

)
.

For any p ∈ Γ, since αn > α > 0, {βn} ⊂ (a, 1− αn) for some a > 0 and {vn} is
bounded, we have

⟨G(vn), vn − p⟩ =
1

σαn

(
⟨xn − xn+1, vn − p⟩

+(1− βn)⟨vn − xn, vn − p⟩
)

≤ M

σα

(
∥xn − xn+1∥+ (1− a)∥vn − xn∥

)
.

Therefore,

⟨G(vnst
), vnst

− p⟩ ≤ M

σα

(
∥xnst

− xnst+1∥+ (1− a)∥vnst
− xnst

∥
)
.

Taking limit as t → ∞ on both sides of the above inequality, and knowing that
xnst

⇀ z, by using (47) and (48), we get vnst
⇀ z, which implies

⟨G(z), z − p⟩ ≤ 0, ∀ p ∈ Γ.

Thus, z ∈ Γ is a solution of the variational inequality problem (36). Since G is
β−strongly monotone, z is a unique solution of (36).
Next, we show that lim sup

s→∞
⟨F (z), z − xns⟩ ≤ 0. Without loss of generality, for

any p ∈ Γ, there exists a subsequence {xnst
} of {xs} which converges weakly to

p. Then

lim sup
s→∞

⟨G(z), z − xns⟩ = lim
t→∞

⟨G(z), z − xnst
⟩
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= ⟨G(z), z − p⟩ ≤ 0. (49)

We also know that

⟨G(z), z − xn+1⟩ = ⟨G(z), z − xn⟩+ ⟨G(z), xn − xn+1⟩. (50)

From (48), (49) and (50), we get

lim sup
s→∞

⟨G(z), z − xns+1⟩ ≤ 0. (51)

Finally, we show that xn → z ∈ Γ. From Lemma 10, we obtain

∥xn+1 − z∥2 ≤ (1− αnδ)∥xn − z∥2

+αnδ[δ
−1{ θn

αn
∥xn − xn−1∥M1 + 2σ⟨G(z), z − xn+1⟩}]. (52)

Therefore, by (51), lim sup
s→∞

Ψns ≤ 0, where Ψns := δ[δ−1{ θn
αn

∥xn − xn−1∥M1 +

2σ⟨G(z), z−xn+1⟩}], under the assumption that lim inf
s→∞

(
∥xns+1−z∥2−∥xns−z∥2

)
≥

0. Then from (52) and Lemma 7, we obtain lim
n→∞

∥xn−z∥ = 0, hence xn → z ∈ Γ.

This completes the proof. ◀

4. Numerical Example

In this section we present a numerical illustration of our Algorithm 1 and then
compare it with Algorithm 3.1 of Tan et al. [23].

Let H = R5 and C = {x ∈ R5 : 1 ≤ xi ≤ 3, i = 1, 2 · · · , 5}. Consider the
quadratic fractional programming problem (see [4])

min
x∈C

f(x) =
xTBx+ aTx+ a0

bTx+ b0
,

where

B =


5 −1 2 0 2
−1 6 −1 3 0
2 −1 3 0 1
0 3 0 5 0
2 0 1 0 4

 , a =


1
2
−1
−2
1

 , b =


1
0
−1
0
1

 , a0 = −2, b0 = 20.
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It is easy to see that

∇f(x) =
(bTx+ b0)(2Bx+ aT )− b(xTBx+ aTx+ a0)

(bTx+ b0)2
.

Let M = ∇f . Then M is Lipschitz continuous on C with the constant L =
max{∥M(x)∥ : x ∈ C}. We compute the value of L using Matlab to obtain
L ≈ 149. The mapping M is said to be pseudomonotone since f is pseudo-
convex. Now, let the mapping S : R5 → R5 be given in the form S(x) =
Bx+ q, where B ∈ R5×5 is a positive definite and symmetric matrix and q ∈ R5

with their entries in (0, 2). It is obvious that S is Lipschitz continuous with a
constant LS = max{eig(P )} and α-strongly monotone with the coefficient α =
min{eig(P )}, where eig(P ) denotes all the eigenvalues of P. For implementation
of both algorithms, we choose θ = 1

3 , µ = 0.5, ρ = 1.5, σ = 0.03, ϵn = 1
(n+1)2

and

αn = 0.1
n+3 . In particular, we let βn = 1

n+1 in Algorithm 1 and we choose δ = 0.003
and ξ = 0.9 in Algorithm 3.1 of Tan et al. [23]. We let the stopping criterion be
given as ∥xn+1 − xn∥ ≤ ϵ, where ϵ = 10−4. Our implementation of the methods
is completed by selecting various initial values of x0 and x1 as follows:

(i) x0 = (0, 0, 0, 0, 0) and x1 = (1, 1, 1, 1, 1);

(ii) x0 = 1.5× rand(5, 1) and x1 = 2× rand(5, 1);

(iii) x0 = 2.5× rand(5, 1) and x1 = 2× rand(5, 1);

(iv) x0 = 5× rand(5, 1) and x1 = 4× rand(5, 1).

The result of this experiment is presented in Figure 1 below.
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Figure 1: Top left: Case (i); Top right: Case (ii); Bottom left : Case (iii); Bottom right: Case (iv).
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