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Abstract. We obtain generalized Hölder estimates for Kolmogorov operators on R3 by
establishing several estimates for singular integrals in generalized Morrey spaces.
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1. Introduction and main results

The Kolmogorov equation was first introduced by Kolmogorov in 1934 to
study the time evolution of the density of a Brownian test particle in the phase
space. It is a linear strongly degenerate second order PDE whose diffusion part is
governed by the Laplace operator in a subset of the variables (velocity variables)
coupled with a transport term that contains the directions of missing ellipticity
(position variables). Such a drift term makes the equation non-symmetric, but
at the same time it is responsible for the hypoelliptic properties of the operator.

Let us consider a Kolmogorov operator in R3:

L = ∂2
x1x1

+ x1∂x2 − ∂t. (1)

Kolmogorov in [20] presented an explicit fundamental solution, smooth out-
side the pole, for the ultraparabolic operator L, which, despite its degeneracy,
possesses a fundamental solution Γ smooth outside the pole, this fact implying
the hypoellipticity of L. Actually,

L
(
(x1, x2, t), (y1, y2, τ)

)
http://www.azjm.org 228 © 2010 AZJM All rights reserved.
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=


√
3

2π(t−τ)2
exp

(
− x2

1+x1y1+y21
t−τ − 3(x1+y1)(x2−y2)

(t−τ)2
− 3

(
x2−y2

)2
(t−τ)3

)
for t > τ,

0 for t ≤ τ.

This phenomenon is well understood in the framework of the theory of Hörmander
operators; actually, this operator can be written as Lu = X2

1u+X0u with

X1 = ∂x1 , X0 = −
(
x∂x2 + ∂t

)
,

and since
[
X1, X0

]
= −∂t, we see that X1, X0,

[
X1, X0

]
span R3 at every point

of the space, hence Hörmander’s condition is satisfied. This operator is explicitly
quoted as a motivating example in the introduction of Hörmander’s paper [19]
and, as was shown, is part of a large class of operators of Hörmander type which
represent interesting physical models.

It is known that L is a degenerate operator which appears in many research
fields. For instance, the Kolmogorov equation

∂2
x1x1

u+ x1∂x2u− ∂tu = 0, (x1, x2, t) ∈ R3 (2)

occurs in the financial problem (see [3, 12]), in the kinetic theory (see [8, 22]) as
well as in the visual perception problem (see [26]).

The second order part in (2) is strongly degenerate due to the presence in
it of the only term ∂2

x1x1
. However, Kolmogorov constructed in 1934 an explicit

fundamental solution of (2) which is a C∞ function outside the diagonal [24].
This implies that (2) is hypoelliptic, i.e. every distributional solution to (2) in
an open subset Ω of R3, actually is a C∞(Ω) function.

We know that L is a class of Kolmogorov-Fokker-Planck ultraparabolic oper-
ators. Due to its importance in physics and in mathematical finance, it has been
extensively studied (see [5, 6, 13, 15, 21, 29, 30]). The authors in [13, 21, 29, 30]
proved an invariant Harnack inequality for the non-negative solutions of the equa-
tion Lu = 0. The local Lp estimates have been studied in [5] and [6]. Based on
the theory of singular integral, Polidoro and Ragusa in [31] obtained Morrey-
type imbedding results and gave a local Holder continuity of the solution. In this
paper, we obtain generalized Hölder estimates for Kolmogorov operators L on
R3.

Morrey spaces and their properties play an important role in the study of local
behavior of solutions to elliptic partial differential equations, refer to [25, 28]. In
[1, 4, 9], the authors showed the boundedness in Morrey spaces for some important
operators in harmonic analysis such as Hardy-Littlewood operators, Calderón-
Zygmund singular integral operators and fractional integral operators. Moreover,
various Morrey spaces are defined in the process of study. In [16, 24, 27], the
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authors introduced and studied the boundedness of the classical operators in
generalized Morrey spaces Mp,φ(Rn) (see, also [2, 17, 18, 32]), etc.

We find it convenient to define the generalized Morrey spaces in the form as
follows.

Definition 1. (Generalized Morrey space). Let 1 ≤ p < ∞ and φ(x, r) be a posi-
tive measurable function on R3× (0,∞). The generalized Morrey space Mp,φ(R3)
is defined as a set of all functions f ∈ Lp

loc(R
3) equipped with the finite norm

∥f∥Mp,φ(R3) = sup
x∈R3,r>0

r
− 6

p

φ(x, r)
∥f∥Lp(B(x,r)).

Also, the weak generalized Morrey space WMp,φ(R3) is defined as a set of all
functions f ∈ Lp

loc(R
3) equipped with the finite norm

∥f∥WMp,φ(R3) = sup
x∈R3,r>0

r
− 6

p

φ(x, r)
∥f∥WLp(B(x,r)).

Remark 1. (1) If φ(x, r) = r
λ−4
p with 0 < λ < 4, then Mp,φ(R3) = Lp,λ(R3)

is the classical Morrey space and WMp,φ(R3) = WLp,λ(R3) is the weak Morrey
space.

(2) If φ(x, r) ≡ r
− 6

p , then Mp,φ(R3) = Lp(R3) is the Lebesgue space and
WMp,φ(R3) = WLp(R3) is the weak Lebesgue space.

Lemma 1. [14] Let φ(x, r) be a positive measurable function on R3 × (0,∞).

(i) If

sup
t<r<∞

r
− 6

p

φ(x, r)
= ∞ for some t > 0 and for all x ∈ R3,

then Mp,φ(R3) = Θ.

(ii) If

sup
0<r<τ

φ(x, r)−1 = ∞ for some τ > 0 and for all x ∈ R3,

then Mp,φ(R3) = Θ.

Remark 2. [14] We denote by Ωp the sets of all positive measurable functions φ
on R3 × (0,∞) such that for all r > 0,

sup
x∈R3

∥∥∥ r
− 6

p

φ(x, r)

∥∥∥
L∞(t,∞)

< ∞, and sup
x∈R3

∥∥∥φ(x, r)−1
∥∥∥
L∞(0,t)

< ∞,
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respectively. In what follows, keeping in mind Lemma 1, we always assume that
φ ∈ Ωp.

Define

[u]Cω(R3) = sup
x,z∈R3,x ̸=z

|u(x)− u(z)|
ω
(
∥x−1 ◦ z∥

) ,
and set C0,ω(R3) for the space with the all functions u : R3 → R with the finite
norm

∥u∥Cω(R3) = ∥u∥L∞(R3) + [u]Cω(R3).

In the case ω(t) = tα, 0 < α ≤ 1, we get the Hölder spaces Cα(R3).
The main results in this paper are as follows.

Theorem 1. Let 1 < p < ∞ and φ = φ(x, r) ∈ Ωp satisfy the condition∫ 1

0
φ(x, r) r dr +

∫ ∞

1
φ(x, r) dr < ∞.

Then there exists a positive constant C, depending only on p, φ and the operator
L, such that for every u ∈ C∞

0 (R3),

|u(x)− u(z)| ≤ C∥Lu∥Mp,φ(R3)

×
(∫ ∥x−1◦z∥

0
φ(x, r) r dr + ∥x−1 ◦ z∥

∫ ∞

∥x−1◦z∥
φ(x, r) dr

)
for every x, z ∈ R3, x ̸= z, where ◦ is the group law given in Section 2.

Let 1 < p < ∞ and φ = φ(x, r) ∈ Ωp satisfy the condition∫ 1

0
φ(x, r) dr +

∫ ∞

1
φ(x, r)

dr

r
< ∞.

Then there exists a positive constant C, depending only on p, φ and the operator
L, such that for every u ∈ C∞

0 (R3),

|∂x1u(x)− ∂x1u(z)| ≤ C∥Lu∥Mp,φ(R3)

×
(∫ ∥x−1◦z∥

0
φ(x, r) dr + ∥x−1 ◦ z∥

∫ ∞

∥x−1◦z∥
φ(x, r)

dr

r

)
for every x, y ∈ R3, x ̸= z.
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Corollary 1. Let 1 < p < ∞ and φ = φ(x, r) ∈ Ωp satisfy the condition∫ δ

0
φ(x, r) r dr + δ

∫ ∞

δ
φ(x, r) dr ≲ φ(x, δ) δ2

for all x and δ > 0. Then there exists a positive constant C, depending only on
p, φ and the operator L, such that for every u ∈ C∞

0 (R3),

|u(x)− u(z)| ≤ C∥Lu∥Mp,φ(R3) φ(x, ∥x−1 ◦ z∥) ∥x−1 ◦ z∥2

for every x, z ∈ R3, x ̸= z, where ◦ is the group law given in Section 2. Moreover,

∥u∥
Cφ(·,r) r2 (R3)

≲ ∥Lu∥Mp,φ(R3).

Let 1 < p < ∞ and φ = φ(x, r) ∈ Ωp satisfy the condition∫ δ

0
φ(x, r) dr + δ

∫ ∞

δ
φ(x, r)

dr

r
≲ φ(x, δ) δ

for all x and δ > 0. Then there exists a positive constant C, depending only on
p, φ and the operator L, such that for every u ∈ C∞

0 (R3),

|∂xju(x)− ∂xju(z)| ≤ C∥Lu∥Mp,φ(R”+1) φ(x, ∥x−1 ◦ z∥) ∥x−1 ◦ z∥

for every x, z ∈ R3, x ̸= z. Moreover,

∥|∂x1u∥Cφ(·,r) r(R3) ≲ ∥Lu∥Mp,φ(R3).

Note that for φ(x, r) = |B(x, r)|
λ−1
p , from Theorem 1 we get the following

result proven in [10].

Corollary 2. [10, Theorem 1.2] If 2p + λ > 6, p + λ < 6 and θ = 2p+λ−6
p ,

then there exists a positive constant C, depending only on p, λ and the operator
L, such that for every u ∈ C∞

0 (R3),

|u(x)− u(z)| ≤ C∥Lu∥Lp,λ(R3) ∥x−1 ◦ x∥θ

for every x, z ∈ R3, z ̸= w, where ◦ is the group law given in Section 2. Moreover,

∥u∥Cθ(R3) ≲ ∥Lu∥Mp,λ(R3).

If p+λ > 6 and δ = p+λ−6
p , then there exists a positive constant C, depending

only on p, λ and the operator L, such that for every u ∈ C∞
0 (R3),∣∣∂x1u(x)− ∂x1u(z)

∣∣ ≤ C∥Lu∥Lp,λ(R3) ∥x−1 ◦ z∥δ

for every x, z ∈ R3, x ̸= z. Moreover,

∥∂x1u∥Cδ(R3) ≲ ∥Lu∥Mp,λ(R3).
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The paper is organized as follows. In Section 2, we introduce some preliminary
and known results which will be used later. The proof of Theorem 1 is given in
Section 3.

2. Preliminaries

It is proved in [21] that the operator L is left-invariant with respect to the
Lie group K =

(
R3, ◦

)
, whose underlying manifold is R3, endowed with the

composition law

(x1, x2, t) ◦ (x1, x2, τ) = (x1 + x2, x2 + y2 − tx1, t+ τ).

Note that

(x1, x2, t)
−1 = (−x1,−x2 − tx1,−t).

The left translation by y = (y1, y2, τ) given by

(x1, x2, t) → (y1, y2, τ) ◦ (x1, x2, t),

is an invariant translation to the operator L given by

δλ = diag
(
t, t3, t2

)
,

where t is a positive parameter, and the homogeneous dimension of
(
R3, ◦

)
with

respect to the dilation δλ is 6.

Remark 3. There is a natural homogeneous norm in R3, induced by dilation
D(λ): ∥x∥ ≡ ∥(x1, x2, t)∥ = |x1| + |x2|1/3 + |t|1/2. Clearly, we have ∥δλz∥ =
λ∥z∥, λ > 0, z ∈ R3.

For every x, y ∈ R3, define a quasidistance by d(x, y) = ∥y−1 ◦ x∥. The ball
with respect to d is denoted by

B(x, r) = Br(x) = {w ∈ R3 : d(x, y) < r}. (3)

Since B(0, r) = δrB(0, 1) and det(δλ) = λ6, we also have

|Br(0)| = r6|B1(0)|,

where |B1(0)| = w2 is the Lebesgue measure of the Euclidean unit ball of R3.
This implies that the Lebesgue measure dx is a doubling measure with respect
to d, since

|B(x, 2r)| = 26|B(x, r)|, z ∈ R3, r > 0.
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Therefore, the space (R3, dx, d) is a space of homogenous type. Recall that if f
and g are functions on R3, their convolution f ∗ g is defined by

f ∗ g(x) =
∫
R3

f(x ◦ y−1)g(y)dy =

∫
R3

g(y−1 ◦ x)f(y)dy.

For the operator L, the fundamental solution Γ(·, y) with pole in y = (y1, y2, τ) ∈
R3 is smooth except on diagonal of R3 × R3. It has the following form at y =
(0, 0, 0):

Γ(x) = Γ(x, 0) =

{ √
3

2πt2
exp

(
− x2

1
t − 3x1x2

t2
− 3x2

2
t3

)
for t > 0,

0 for t ≤ 0.

And

Γ(x, y) =

{ √
3

2π(t−τ)2
exp

(
− x2

1+x1y1+y21
t−τ − 3(x1+x2)(x2−y2)

(t−τ)2
− 3(x2−y2)2

(t−τ)3

)
for t > τ,

0 for t ≤ τ.

Moreover, Γ ∈ C∞(R3 \ {0}).
The authors in [11] and [33] proved a representation formula:

u(x) = −(Lu ∗ Γ)(x) = −
∫
R3

Γ(y−1 ◦ x)Lu(y)dy. (4)

The following formula was given by Bramanti in [7]:

∂2
x1x1

u(x) = −P.V. (Lu ∗ ∂2
x1x1

Γ)(x) + c11Lu(x) (5)

for every u ∈ C∞
0 (R3) and some constant c11. The principal value in (5) is

understood as

P.V. (Lu ∗ ∂2
x1x1

Γ)(x) = lim
ε→0

∫
R3\B(z,ε)

(∂2
x1x1

Γ)(y−1 ◦ x)Lu(Y )dy.

Set

Γ1(x) = ∂x1Γ(x), Γ11(x) = ∂x1∂x1Γ(x).

We also observe that Γ(x) is homogeneous of degree −4 with respect to the
group (δλ)λ>0, and Γ1(x) is homogeneous of degree −5. Recall that Γ11(·) has
the following properties.

Lemma 2. ([6]). One has
(a) Γ11(·) ∈ C∞(R3 \ {0});
(b) Γ11(·) is homogeneous of degree −6;
(c) for every R > r > 0,∫

r<∥x∥<R
Γ11(x)dx =

∫
∥z∥=1

Γ11(x)dσ(x) = 0.
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3. Generalized Hölder continuity

In this section, by demonstrating generalized Hölder estimates for two integral
operators, we prove Theorem 1.

Lemma 3. [23]. Let K ∈ C1(R3 \ {0}) be a homogeneous function of degree
b < 1 with respect to the group (δλ)λ>0. There exist two constants c > 0 and
M > 1 such that if ∥x∥ > M∥x−1 ◦ y∥, then

|K(y)−K(x)| ≤ c∥x−1 ◦ y∥ · ∥x∥b−1.

Lemma 4. [23] For every x, y, z ∈ R3, the following assertions hold:
(1) there exists a constant c > 0 such that

Γ(x−1 ◦ y) ≤ c

∥x−1 ◦ y∥4
, Γi(x

−1 ◦ y) ≤ c

∥x−1 ◦ y∥5
.

(2) there exist two constants c > 0 and M > 1 such that if ∥x−1 ◦ z∥ ≥
M∥x−1 ◦ y∥, then ∣∣Γ(x−1 ◦ z)− Γ(x−1 ◦ y)

∣∣ ≤ c ∥z−1 ◦ y∥
∥x−1 ◦ z∥5

,

∣∣Γi(x
−1 ◦ z)− Γi(x

−1 ◦ y)
∣∣ ≤ c ∥z−1 ◦ y∥

∥x−1 ◦ z∥6
.

Lemma 5. Let p ∈ (1,∞) and λ ∈ [0, 6). With fixed z ∈ R3, α ∈ [0, 6), β ∈ (0, 6)
and σ > 0, for every g ∈ Mp,φ(R3), we set

T ′
αg(x) =

∫
∥y−1◦x∥≥σ ∥z−1◦x∥

g(y)

∥y−1 ◦ x∥6−α
dy

and

T ′′
β g(x) =

∫
∥y−1◦x∥<σ∥z−1◦x∥

g(y)

∥y−1 ◦ x∥6−β
dy.

If
∫∞
1 φ(x, r) rα−1 dr < ∞, then there exists c = c(p, φ, α, σ) > 0 such that

|T ′
αg(x)| ≤ c ∥g∥Mp,φ(R3)

∫ ∞

∥z−1◦x∥
φ(x, r) rα−1 dr. (6)

Moreover, if
∫ 1
0 φ(x, r) rβ−1 dr < ∞, then there exists c = c(p, φ, β, σ) > 0 such

that

|T ′′
β g(x)| ≤ c ∥g∥Mp,φ(R3)

∫ ∥z−1◦x∥

0
φ(x, r) rβ−1 dt. (7)
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Proof. Observing that

|T ′
αg(x)| ≤

∞∑
k=1

∫
2k−1σ∥z−1◦x∥≤∥y−1◦x∥<2kσ∥z−1◦x∥

|g(y)|
∥y−1 ◦ x∥6−α

dy

≤
∞∑
k=1

( 2

2kσ∥z−1 ◦ x∥

)6−α
∫
B

2kc1σ∥z−1◦x∥(x)
|g(y)| dy

≤
∞∑
k=1

( 2

2kσ∥z−1 ◦ x∥

)6−α
∥g∥

Lp
(
B

2kc1σ∥z−1◦x∥(x)
) ∣∣B2kc1σ∥z−1◦x∥(x)

∣∣ 1
p′

≤
∞∑
k=1

( 2

2kσ∥z−1 ◦ x∥

) 6
p
−α

∥g∥
Lp
(
B

2kc1σ∥z−1◦x∥(x)
) ≲ ∥g∥Mp,φ(R3)

×
∞∑
k=1

( 2

2kσ∥z−1 ◦ x∥

) 6
p
−α (

2kσ∥z−1 ◦ x∥
) 6

p φ
(
x, 2kc1σ∥z−1 ◦ x∥

)
≲ ∥g∥Mp,φ(R3)

∞∑
k=1

(
2kσ∥z−1 ◦ x∥

)α
φ
(
x, 2kσ∥z−1 ◦ x∥

)
≲ ∥g∥Mp,φ(R3)

∫ ∞

∥z−1◦x∥
φ(x, r) rα−1 dr,

we see that (6) is true, since the above series is convergent.
Similarly, by integrating over the set

{y ∈ R3 : 2−kσ∥z−1 ◦ x∥ ≤ ∥y−1 ◦ x∥ < 21−kσ∥z−1 ◦ x∥},

we get

|T ′′
β g(x)| ≤

∞∑
k=1

∫
2−kσ∥z−1◦x∥≤∥y−1◦x∥<21−kσ∥z−1◦x∥

|g(y)|
∥y−1 ◦ x∥6−β

dy

≤
∞∑
k=1

( 2

21−kσ∥z−1 ◦ x∥

)6−β
∫
B

21−kc1σ∥z−1◦x∥(x)
|g(y)| dy

≤
∞∑
k=1

( 2

21−kσ∥z−1 ◦ x∥

)6−β
∥g∥

Lp
(
B

21−kc1σ∥z−1◦x∥(x)
) ∣∣B21−kc1σ∥z−1◦x∥(x)

∣∣ 1
p′

≤
∞∑
k=1

( 2

21−kσ∥z−1 ◦ x∥

) 6
p
−β

∥g∥
Lp
(
B

21−kc1σ∥z−1◦x∥(x)
) ≲ ∥g∥Mp,φ(R3)

×
∞∑
k=1

( 1

2−kσ∥z−1 ◦ x∥

) 6
p
−β (

2−kσ∥z−1 ◦ x∥
) 6

p φ
(
x, 2−kσ∥z−1 ◦ x∥

)
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≲ ∥g∥Mp,φ(R3)

∞∑
k=1

(
2−kσ∥z−1 ◦ x∥

)β
φ
(
x, 2−kσ∥z−1 ◦ z∥

)
≲ ∥g∥Mp,φ(R3)

∫ ∥z−1◦x∥

0
φ(x, r) rβ−1 dr.

As the above series is convergent, (7) is proved. ◀

Proof of Theorem 1. For u ∈ C∞
0 (R3), by Lemmas 4 and 5, there exist

M, c > 0 such that

|u(x)− u(z)| ≤
∫
R3

|Γ(y−1 ◦ x)− Γ(y−1 ◦ z)||L(y)|dy

≲
∫
∥y−1◦z∥≥M∥x−1◦z∥

∥x−1 ◦ z∥
∥y−1 ◦ x∥5

|Lu(y)|dy

+

∫
∥y−1◦x∥<M∥x−1◦z∥

1

∥y−1 ◦ x∥4
|Lu(y)|dy

+

∫
∥y−1◦x∥<M∥x−1◦z∥

1

∥y−1 ◦ z∥4
|Lu(y)|dy

≡ I1 + I2 + I3.

By applying Lemma 5 and choosing α = 1 and σ = M/c1, we obtain the
existence of a positive constant c such that

|I1| ≲ ∥Lu∥Mp,φ(R3) ∥x−1 ◦ z∥
∫ ∞

∥x−1◦z∥
φ(x, r) dr. (8)

Choosing β = 2 and σ = Mc1 in Lemma 5, we obtain the existence of a positive
constant c such that

|I2| ≲ ∥Lu∥Mp,φ(R3)

∫ ∥x−1◦z∥

0
φ(x, r) r dr. (9)

Choosing β = 2 and σ = c2(1 + M) in Lemma 5, we obtain the existence of a
positive constant c such that

|I3| ≲ ∥Lu∥Mp,φ(R3)

∫ ∥x−1◦z∥

0
φ(x, r) r dr. (10)

Hence, by (8), (9) and (10), it is easy to obtain

|u(x)− u(z)| ≤ C∥Lu∥Mp,φ(R3)
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×
(∫ ∥x−1◦z∥

0
φ(x, r) r dr + ∥x−1 ◦ z∥

∫ ∞

∥x−1◦z∥
φ(x, r) dr

)
,

where C is a positive constant, x, z ∈ R3, x ̸= z.
By (4), we write

∂x1u(x) = −
∫
R3

Γ1(y
−1 ◦ x)Lu(y)dy

for every x ∈ R3. Analogously, by Lemmas 4 and 5, we obtain the existence of
M, c > 0 such that

|∂x1u(x)− ∂x1u(z)| ≤
∫
R3

|Γ1(y
−1 ◦ x)− Γ1(y

−1 ◦ z)||Lu(y)|dy

≤
∫
∥y−1◦x∥≥M∥x−1◦z∥

c∥x−1 ◦ z∥
∥y−1 ◦ x∥6

|Lu(y)|dy

+

∫
∥y−1◦x∥<M∥x−1◦z∥

c

∥y−1 ◦ x∥5
|Lu(y)|dy

+

∫
∥y−1◦x∥<M∥x−1◦z∥

c

∥y−1 ◦ z∥5
|Lu(y)|dy

≡ I ′1 + I ′2 + I ′3.

By applying Lemma 5 and choosing α = 0 and σ = M/c1, we obtain the
existence of a positive constant c such that

|I ′1| ≲ ∥Lu∥Mp,φ(R3) ∥x−1 ◦ z∥
∫ ∞

∥x−1◦z∥
φ(x, r)

dr

r
. (11)

Choosing β = 1 and σ = Mc1 in Lemma 5, we obtain the existence of a positive
constant c such that

|I ′2| ≤ c ∥Lu∥Mp,φ(R3)

∫ ∥x−1◦z∥

0
φ(x, r) dr. (12)

Choosing β = 1 and σ = c2(1 + M) in Lemma 5, we obtain the existence of a
positive constant c such that

|I ′3| ≤ c∥Lu∥Mp,φ(R3)

∫ ∥x−1◦z∥

0
φ(x, r) dr. (13)

Hence, by (11), (12) and (13), we derive∣∣∂x1u(x)− ∂x1u(z)
∣∣ ≤ C ∥Lu∥Mp,φ(R3)
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×
(∫ ∥x−1◦z∥

0
φ(x, r) dr + ∥x−1 ◦ z∥

∫ ∞

∥x−1◦z∥
φ(x, r)

dr

r

)
,

where C is a positive constant, x, z ∈ R3, x ̸= z. This completes the proof. ◀

Proof of Corollary 2. If we take φ(x, r) = |B(x, r)|
λ−1
p in Theorem 5, then we

get ∫ ∞

∥z−1◦x∥
φ(x, r) rα−1 dr =

∫ ∞

∥z−1◦x∥
r

λ−6
p

+α−1
dr = ∥z−1 ◦ x∥

λ−6
p

+α

and ∫ ∞

1
φ(x, r) rα−1 dr =

∫ ∞

1
r

λ−6
p

+α−1
dr < ∞ ⇔ λ− 6

p
+ α > 0

⇔ λ+ pα < 6.

Also,∫ ∥z−1◦x∥

0
φ(x, r) rβ−1 dr =

∫ ∥z−1◦x∥

0
r

λ−6
p

+β−1
dr = ∥z−1 ◦ x∥

λ−6
p

+β

and ∫ 1

0
φ(x, r) rβ−1 dr =

∫ 1

0
r

λ−6
p

+β−1
dr < ∞ ⇔ λ− 6

p
+ β > 0

⇔ λ+ pβ > 6.

This completes the proof. ◀
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