
Azerbaijan Journal of Mathematics
V. 15, No 1, 2025, January
ISSN 2218-6816
https://doi.org/10.59849/2218-6816.2025.1.3

On the Existence and Uniqueness of a Positive
Solution to a Boundary Value Problem for a
Nonlinear Functional Fractional Order Differential
Equation

G.E. Abduragimov

Abstract. This article considers a two-point boundary value problem for a nonlinear
functional-differential equation of a fractional order with boundary conditions of the
Sturm-Liouville type. Sufficient conditions for the existence of a unique positive solution
of the problem under consideration are obtained using special topological tools. The
existence of a positive solution is proved with the help of the well-known Go-Krasnoselsky
theorem on the fixed point of the operator, and the uniqueness is established using the
contraction mapping principle. An example is given that illustrates the fulfillment of
sufficient conditions for the unique solvability of the problem posed. The results obtained
complement the previous results of the author on the existence and uniqueness of positive
solutions to boundary value problems for non-linear functional-differential equations.
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1. Introduction

Fractional derivatives are a generalization of integer order derivatives. There
are several types of fractional derivatives, for example, the Riemann-Liouville
fractional derivative, the Marchaux fractional derivative, the Caputo derivative,
etc. Fractional calculus is an excellent tool for modeling various phenomena
in applied research. Fractional differential equations are often encountered in
various fields of science and technology, such as physics, chemistry, economics, etc.
In particular, they are widely used in the study of viscoelasticity, electrochemical
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control, porous media, electromagnetics, etc. As a result, fractional equations
have recently attracted wide attention and acquired great practical importance.

A fairly large number of studies have been dedicated to nonlinear differential
equations of fractional order (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15]). However, the theory of boundary value problems for non-linear fractional
equations, containing a linear operator is still at the initial stage, and many
aspects of this direction have not been fully studied.

This paper attempts to fill this gap to some extent. Based on the well-known
Go-Krasnoselsky theorem, we established sufficient conditions for the existence
of a positive solution to a boundary value problem for a nonlinear functional-
differential equation of a fractional order. To prove the uniqueness of the solution,
the contraction mapping principle was applied. The results obtained complement
our research on this topic.

2. Problem Statement and Main Results

For the convenience of calculations, we will use the following notations: C will
denote the space C[0, 1], Lp (1 < p < ∞) will be the space Lp(0, 1) and W2 will
denote the space of real functions defined on [0, 1] with an absolutely continuous
derivative.

Consider the boundary value problem

Dα
0+x(t) + f (t, (Tx) (t)) = 0, 0 < t < 1, (1)

x(0) + x′(0) = 0, x(1) + x′(1) = 0, (2)

where α ∈ (1, 2] is a real number, Dα
0+ is a Riemann-Liouville fractional deriva-

tive, and T : C → Lp (1 < p < ∞) is a linear positive continuous operator.

Regarding the function f(t, u), suppose that it is non-negative in the domain
[0, 1]× [0,∞), increases monotonically in u, satisfies the Carathéodory condition
and f(·, 0) ≡ 0.

Definition 1. By a positive solution to the problem (1)–(2) we mean the function
x ∈ W2, positive in the interval (0, 1), satisfying almost everywhere equation (1)
and boundary conditions (2).

It is easy to verify that the problem (1)–(2) is equivalent to the equation

x(t) =

∫ 1

0
G(t, s)f (s, (Tx) (s)) ds, 0 ≤ t ≤ 1, (3)
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where

G(t, s) =


(1− s)α−1(1− t) + (t− s)α−1

Γ(α)
+

(1− s)α−2(1− t)

Γ(α− 1)
, if 0 ≤ s ≤ t,

(1− s)α−1(1− t)

Γ(α)
+

(1− s)α−2(1− t)

Γ(α− 1)
, if t ≤ s ≤ 1.

It was shown in [15] that the Green’s function of the operator Dα
0+ with

boundary conditions (2) has the following properties:

1. G(t, s) > 0, t, s ∈ (0, 1),

2. min1/4≤t≤3/4G(t, s) ≥ 1
8M(s), s ∈ (0, 1),

3. max0≤t≤1G(t, s) ≤ M(s), s ∈ (0, 1),

where M(s) =
2(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
, s ∈ [0, 1).

Let’s assume that for almost all t ∈ [0, 1] the function f(t, u) satisfies the
condition

f(t, u) ≤ a1(t) + bup/q, (4)

where b > 0 is a constant, a1 ∈ Lq, 1 < q < p < ∞.
In operator form, the equation (3) can be rewritten as

x = GNTx,

where N : Lp → Lq is a Nemytsky operator, and G : Lq → C is a linear contin-
uous operator defined by the kernel G(t, s).

The operator A defined by the equality

(Ax)(t) =

∫ 1

0
G(t, s)f (s, (Tx) (s)) ds, 0 ≤ t ≤ 1,

acts in the space of non-negative continuous functions and is completely contin-
uous [16, p. 161].

Assume that, for almost all t ∈ [0, 1] and arbitrary u ≥ 0,

f(t, u) ≥ a0(t)u
p/q, (5)

where a0 ∈ Lq, a0 ≥ 0, 1 < q < p < ∞.
We define the cone of a nonnegative functions K̃ as follows:

K̃ =

{
x ∈ C : min

1/4≤t≤3/4
x(t) ≥ 1

8
∥x∥C

}
.
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Lemma 1. The operator A leaves the cone K̃ invariant.

Proof. By virtue of the above properties of the Green’s function, we have

min
1/4≤t≤3/4

(Ax)(t) = min
1/4≤t≤3/4

∫ 1

0
G(t, s)f (s, (Tx) (s)) ds ≥

≥ 1

8

∫ 1

0
M(s)f (s, (Tx) (s)) ds.

On the other hand

∥Ax∥C = max
0≤t≤1

|(Ax)(t)| ≤
∫ 1

0
M(s)f (s, (Tx) (s)) ds.

Finally we have

min
1/4≤t≤3/4

(Ax)(t) ≥ 1

8
∥Ax∥C .

◀

Let us introduce the following notations:

Ω1 =
{
x ∈ K̃ : ∥x∥C < r1

}
,

Ω2 =
{
x ∈ K̃ : ∥x∥C < r2

}
,

∂Ω1 =
{
x ∈ K̃ : ∥x∥C = r1

}
,

∂Ω2 =
{
x ∈ K̃ : ∥x∥C = r2

}
,

Ω = Ω2\Ω1,

where r1, r2 are some ordered positive numbers, the selection rule for which we
will discuss below.

Theorem 1. Let’s assume that the conditions (4), (5) are satisfied and

1.
p− q

q

(
q

pb∥M∥Lq′γ
p
q

) q
p−q

≥ ∥a1∥Lq∥M∥Lq′ ,

where 1
q +

1
q′ = 1, γ is the norm of the operator T ;

2. 0 <
∫ 3/4
1/4 M(s)a0(s)(Tχ)

p
q (s)ds < 64bpq∥M∥Lq′γ

p
q ,

where χ(t) is any continuous function on [14 ,
3
4 ] such that 0 ≤ χ(t) ≤ 1.

Then the boundary value problem (1)–(2) has at least one positive solution x ∈ Ω.
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Proof. To prove the existence of a positive solution to problem (1)–(2), we
use the Go-Krasnoselsky theorem on a fixed point of a positive operator [17].

Let us first show the existence of a positive number r1 such that for x ∈
K̃ ∩ ∂Ω1

∥Ax∥C ≤ ∥x∥C . (6)

In view of the above properties of the Green’s function and the condition (4),
we obtain

∥(Ax)(t)∥C = max
0≤t≺1

∫ 1

0
G(t, s)f (s, (Tx) (s)) ds ≤

≤
∫ 1

0
M(s)a1(s) ds+ b

∫ 1

0
M(s) (Tx)

p
q (s) ds ≤

≤ ∥a1∥Lq∥M∥Lq′ + b∥M∥Lq′∥Tx∥
p
q

Lp
≤ ∥a1∥Lq∥M∥Lq′ + b∥M∥Lq′γ

p
q ∥x∥

p
q

C .

Consider the function

φ(r) = r − β1r
δ − β2,

where β1 > 0, β2 ≥ 0, δ > 1.

It is easy to verify that for r > 0 the function φ(r) reaches its maximum value

at r = rmax =

(
1

δβ1

) 1
δ−1

. In turn, φ(rmax) is non-negative if the inequality

(
1− 1

δ

)(
1

δβ1

) 1
δ−1

≥ β2 (7)

holds.

Let δ = p
q , β1 = b∥M∥Lq′γ

p
q , β2 = ∥a1∥Lq∥M∥Lq′ and r1 = rmax . By virtue

of (7), the non-negativity of φ(r1) obviously provides satisfaction of condition 1
of this theorem. Thus, the validity of relation (6) is established.

Let us now choose the number r2 > 0 such that for x ∈ K̃ ∩ ∂Ω2

∥Ax∥C ≥ ∥x∥C . (8)

By virtue of (5) and the corresponding properties of the Green’s function, we
have

(Ax)(t) =

∫ 1

0
G(t, s)f (s, (Tx) (s)) ds ≥

∫ 3/4

1/4
G(t, s)f (s, (Tx) (s)) ds ≥
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≥ 1

8

∫ 3/4

1/4
M(s)a0(s)(Tx)

p
q (s)ds ≥ 1

64

∫ 3/4

1/4
M(s)a0(s)(Tχ)

p
q (s)ds · ∥x∥

p
q

C .

Putting r2 =

(
64∫ 3/4

1/4
M(s)a0(s)(Tχ)

p
q (s)ds

) q
p−q

, we get the inequality (8).

By virtue of condition 2 of the theorem, 0 < r1 < r2. Therefore, according to
the Go–Krasnoselsky theorem, a completely continuous operator A has at least
one fixed point in Ω, which in turn is equivalent to the existence of at least one
positive solution x ∈ Ω of the boundary value problem (1)–(2). ◀

Theorem 2. Let the conditions of Theorem 1 be satisfied. In addition, suppose
that the function f(t, u) is differentiable with respect to u, f ′

u(t, u) is monotoni-
cally increasing with respect to the second argument, and

γ∥θ∥Lp′ < 1, (9)

where θ(t) ≡ M(t)
∣∣f ′

u (t, r2 (Tχ) (t))
∣∣, 1

p′ +
1
p = 1.

Then the boundary value problem (1)–(2) has a unique positive solution x ∈ Ω.

Proof. Due to the monotonicity of the derivative f ′
u(t, u) with respect to the

second argument, applying Lagrange’s finite increment formula, for any x1, x2 ∈
Ω we obtain

|(Ax1)(t)−A(x2)(t)| =
∣∣∣∣∫ 1

0
G(t, s)f ′

u (s, ỹ(s)) (Ty)(s) ds

∣∣∣∣ ≤
≤

∫ 1

0
M(s)

∣∣f ′
u (s, r2 (Tχ) (s))

∣∣∣∣(Ty)(s)∣∣ ds ≤
≤ ∥θ∥Lp′∥Ty∥Lp ≤ γ∥θ∥Lp′∥y∥C ,

where ỹ(t) takes values between (Tx1) (t) and (Tx2) (t), and y(t) denotes the
absolute value of the difference x1(t)− x2(t).

Taking into account the condition (9) of the theorem, based on the contraction
mapping principle, we conclude that the boundary value problem (1)–(2) has a
unique positive solution x ∈ Ω. ◀

Example 1. Consider the problem

D
3/2
0+ x(t) +

(∫ 1

0
x(s)ds

)2

= 0, 0 < t < 1, (10)

x(0) + x′(0) = 0, x(1) + x′(1) = 0, (11)



On the Existence and Uniqueness of a Positive Solution to a Boundary Value Problem 9

where p/q = 2, γ = 1. We set b = 1, and as a1(t) we take any non-negative func-

tion summable with degree q > 1 and satisfying the condition ∥a1∥Lq ≤ 1

2∥M∥2Lq′

,

which follows from the condition 1 of Theorem 1. Now, if we take, for example,
χ(t) = 1, then the requirement 2 of Theorem 1, takes the form

0 <

∫ 3/4

1/4
M(s)a0(s)ds ≤ 128∥M∥Lq′

and, obviously, always holds for any non-negative function a0(t) ≤ 1, t ∈ [0, 1].

Thus, based on Theorem 1, we can conclude that the boundary value problem
(8)–(9) has at least one positive solution.

Let us now find out under what conditions the positive solution of the problem
(8)–(9) is unique. The condition (9) of Theorem 2 in this case has the form

∥θ∥Lp′ =
∥M∥Lp′

∥M∥Lq′
< 1.

But since p′ < q′, obviously ∥M∥Lp′ < ∥M∥Lq′ .

Therefore, the problem (10)–(11) has a unique positive solution.
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