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Universal Covariant Representations and Positive
Elements
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Abstract. Let (G,P ) be a quasi-lattice ordered group. In this paper, we establish
the amenability of (G,P ) by demonstrating the existence of a positive, faithful, linear
mapping from C∗(G,P ) into a specific subalgebra within C∗(G,P ). Afterward, we employ
our findings to derive generalizations of Murphy and Cuntz’s theorems.
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1. Introduction

The theory of crossed products of C∗-algebras by endomorphisms has been
experiencing rapid development. This theory constitutes a broader perspective
than the theory of crossed products of C∗-algebras by semigroups of automor-
phisms, which stands as an interesting area within modern operator algebra the-
ory. The importance of this theory has motivated many authors to investigate
broader cases of crossed products of C∗-algebras by semigroups of endomorphisms
([3, 5, 6, 7]). The roots of the theory of crossed products by semigroups of endo-
morphisms can be traced back to the pioneering work of Cuntz in [4].

In this paper, our focus lies in the realm of crossed products by semigroups
of endomorphisms, encompassing actions by general semigroups, specifically the
positive cone P of a partially ordered discrete abelian group G.

For a quasi-lattice ordered group (G,P ), as established in [1, Theorem 3.2],
the universal covariant representation (A,U) is a true representation. Further-
more, if we consider a covariant representation (A, V ) of the lattice-ordered group
(G,P ), there exists a ∗-homomorphism denoted as ϕ : C∗(G,P ) → C∗(V ), with
the property that ϕ(Up) = Vp.
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We aim to provide simplified characterizations of amenability by demonstrat-
ing the existence of a positive, faithful, linear map of C∗(G,P ) onto a certain
subalgebra of C∗(G,P ).

In Section 2, we give the background material about quasi-lattice ordered
groups and covariant representations. In Section 3, we establish the faithfulness
of the universal representation ΦU on the positive elements of certain subalgebra
of C∗(G,P ). In Section 4, we apply [1, Theorem 3.6] to show that abelian quasi-
lattice ordered groups are amenable. Then we show that the results of Murphy
and Cuntz are special cases of our results.

2. Preliminaries and background material

In this section we give some background material that can be found in [1].

Definition 1. The partially ordered group (G,P ) is quasi-lattice ordered if every
finite subset of G with an upper bound in P has a least upper bound in P [3,
Section 2].

Definition 2. A covariant isometric representation of the quasi-lattice ordered
group (G,P ) may be defined as a pair (A, V ) consisting of a unital C∗-algebra A
and a map V from P to A such that

(i) Ve = 1A;

(ii) VpVq = Vpq for all p, q ∈ P ;

(iii) V ∗
p Vq =

{
Vp−1(p∨q)V

∗
q−1(p∨q), when p, q have a common upper bound in P ;

0, otherwise.

Remark 1. The C∗-algebra generated by the set {Vp : p ∈ P} will be denoted by
C∗(V ).

Definition 3. A covariant representation (A, V ) of the quasi-lattice ordered
group (G,P ) is called a true representation if

∏
p∈F (1 − VpV

∗
p ) ̸= 0 for all fi-

nite subsets F of P\{e}.

Definition 4. A universal covariant representation (A,U) of the quasi-lattice
ordered group (G,P ) is a covariant representation such that if (B, V ) is any
other covariant representation of (G,P ), then there is a unique ∗-homomorphism
ϕ : C∗(U) → C∗(V ) such that ϕ(Up) = Vp for all p ∈ P .



46 M. Ahmed

3. Faithfulness on the positive elements

In this section, we establish the faithfulness of the universal representation ΦU

on the positive elements of certain subalgebra of C∗(G,P ). If a positive, faithful,
linear map of C∗(G,P ) can be found, then by [2, Proposition 4.1], (G,P ) is
amenable.

Lemma 1. Let A be a C∗-algebra and K be a family of C∗-subalgebras such that

A =
⋃
K∈K

K. If M is a closed ideal in A, then M =
⋃
K∈K

K ∩M .

Proof. To simplify the notation, we write MK =M ∩K for each K ∈ K, and⋃
MK rather than

⋃
K∈K

K ∩M .

First note that MK ⊂ M for each K ∈ K, so
⋃
MK ⊂ M , since M is

closed. To show the reverse inclusion contrapositively, consider a ∈ A such that
a /∈

⋃
MK . Let

ϵ = inf
b∈

⋃
MK

∥a− b∥ > 0.

Then, since A =
⋃

K∈KK, there is K ∈ K and k ∈ K such that ∥a−k∥ ≤ ϵ/3.
We claim

inf
b∈M

∥k − b∥ = inf
b∈MK

∥k − b∥.

Use this claim and the triangle inequality in the form

∥a− b∥ ≥ ∥k − b∥ − ∥a− k∥

to obtain

inf
b∈M

∥a− b∥ ≥ inf
b∈M

(∥k − b∥ − ∥a− k∥)

= inf
b∈M

(∥k − b∥)− ∥a− k∥

= inf
b∈MK

(∥k − b∥)− ∥a− k∥.

Now inf
b∈MK

(∥k − b∥) ≥ inf
b∈

⋃
MK

(∥k − b∥), since MK ⊂
⋃
MK . Also ∥k − b∥ ≥

∥a− b∥ − ∥a− k∥ by the triangle inequality, so

inf
b∈M

∥a− b∥ ≥ inf
b∈

⋃
K∈K M

⋂
K
(∥k − b∥)− ∥x− k∥

≥ inf
b∈

⋃
K∈K M

⋂
K
(∥a− b∥)− 2∥x− k∥
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≥ ϵ− 2ϵ/3 > 0.

Thus a /∈M and M ⊂
⋃
MK giving M =

⋃
MK as required.

To prove the claim, consider the quotient map ρ : A → A/M . This is a ∗-
homomorphism and it is well-known that ρ(K) is a C∗-subalgebra of A/M . Also,
MK is an ideal and so K/MK is a C∗-algebra. Now, the C∗-algebra homomor-
phism k +M 7→ k +MK is injective, since if k +MK = 0 for some k ∈ K, then
k ∈ MK ⊂ M and hence k +M = 0. Thus ∥k +M∥ = ∥k +MK∥ for all k ∈ K.
Therefore by [4, Proposition 5],

inf
b∈M

∥k − b∥ = ∥k +M∥ = ∥k +MK∥ = inf
b∈MK

∥k − b∥

as claimed. ◀

The following theorem is an improvement of Laca and Raeburn’s argument in
[5, Lemma 4.1] as we use our result in [2, Lemma 3.2] to show that the universal
representation ΦU is faithful on the positive elements of certain subalgebras of
C∗(G,P ).

Theorem 1. Let (G,P ) and (G,P) be quasi-lattice ordered groups and let (ΦU , U)
denote the universal covariant isometric representation of the quasi-lattice ordered
group (G,P ). Suppose there is an order preserving homomorphism ψ : G → G
such that for p, q ∈ P with a common upper bound in P ,

(i) ψ(p) = ψ(q) implies p = q, and

(ii) ψ(p ∨ q) = ψ(p) ∨ ψ(q).

Then
K := span{UpU

∗
q , for p, q ∈ P and ψ(p) = ψ(q)}

is a C∗-algebra and ΦU is faithful on the positive elements of K.

Proof. We claim that K is a C∗-algebra with a family of C∗-subalgebras
{KF }F∈F such that K =

⋃
F∈F KF . Let M = {a ∈ C∗(G,P ) : ΦU (a

∗a) = 0}.
By [2, Lemma 3.2], M is a closed ideal in C∗(G,P ), so K

⋂
M is a closed ideal

in K. We claim that KF
⋂
M = {0} for each F ∈ F and hence by Lemma 1,

K ∩M =
⋃
F∈F

KF ∩M = {0}

and the claim follows. To prove the first claim, let F be the collection of non-
empty finite subsets of P such that if s, t ∈ F have a common upper bound in P,
then s ∨ t ∈ F . For each F ∈ F , define

KF = span{UpU
∗
q : ψ(p) = ψ(q) ∈ F} ⊂ K
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and write Ks instead of K{s} for each s ∈ P. We claim KF is a C∗-algebra. To
see this, consider p, q, r, s ∈ P such that ψ(p) = ψ(q) ∈ F and ψ(r) = ψ(s) ∈ F
and notice that

UpU
∗
qUrU

∗
s =

{
Upq−1(q∨r)U

∗
sr−1(q∨r), if q, r have a common upper bound in P

0, otherwise.

Now ψ(pq−1) = 1, so

ψ(pq−1(q ∨ r)) = ψ(q ∨ r) = ψ(q) ∨ ψ(r) ∈ F

by assumption. Similarly ψ(sr−1(q∨r)) = ψ(q)∨ψ(r) ∈ F and hence UpU
∗
qUrU

∗
s ∈

KF . Thus by linearity and continuity of the algebraic product, KF is a C∗-
algebra. Note that the finiteness of F has not been used yet, so the same reasoning
gives that K = span{UpU

∗
q : ψ(p) = ψ(q) ∈ P} is a C∗-algebra.

Note that
⋃

F∈F KF ⊂ K, since KF ⊂ K for each F ∈ F and K is closed. To
show the reverse inclusion, let

a ∈ span{UpU
∗
q : ψ(p) = ψ(q) ∈ P}.

Since a could be written as a finite sum of elements UpU
∗
q , there is a finite set

H ⊂ P such that

a ∈ span{UpU
∗
q : ψ(p) = ψ(q) ∈ H}.

Define

H∨ = {s ∨ t ∨ ... ∨ u : s, t, ..., u ∈ H have a common upper bound in P}.

This set contains at most 2|H| elements, so H∨ ∈ F . Moreover, a ∈ KH∨ ⊂⋃
F∈F KF , since H ⊂ H∨. Hence

span{UpU
∗
q : ψ(p) = ψ(q) ∈ P} ⊂

⋃
F∈F

KF

and thus K ⊂
⋃

F∈F KF , and K =
⋃

F∈F KF as required.

To show that KF ∩M = {0} for each F ∈ F , consider F ∈ F and a ∈ KF ∩M .
Write a = limn→∞

∑
s∈F an,s, where an,s ∈ Ks for each integer n and s ∈ F . Now,

F is finite, hence it has an element s0 which is minimal in the quotient order.
Let Ps0 denote the projection of ℓ2(P ) onto the subspace

Hs0 = span{δp : ψ(p) = s0}.
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We claim that for each integer n,

∥an,s0∥ = ∥ϕ(
∑
s∈F

an,s)Ps0∥,

where ϕ : C∗(G,P ) → B(ℓ2(P )) is the unique ∗-homomorphism such that ϕ(Up) =
Tp for all p ∈ P . By the continuity of ϕ and since M = ker(ϕ) ([2, Lemma 3.2]),
we have

ϕ(
∑
s∈F

an,s) → ϕ(a) = 0.

So now an,s0 → 0 and a = limn→∞
∑

s∈F\{s0} an,s. This process may be repeated
at most |F | times to deduce that a = 0.

Finally, to show

∥an,s0∥ = ∥ϕ(
∑
s∈F

an,s)Ps0∥,

consider p, q, r ∈ P such that ψ(p) = ψ(q) ∈ F and δr ∈ Hs0 . Use the covariance
condition to obtain

ϕ(UpU
∗
q )δr = TpT

∗
q Trδe

=

{
Tpq−1(q∨r) T

∗
r−1(q∨r)δe, if q, r have c.u.b in P

0, otherwise.

Notice that Tzδe = 0 for all z ∈ P \ {e}, so ϕ(UpU
∗
q )δr = 0 unless r−1(q ∨ r) = e.

But then q ≤ q ∨ r = r and ψ(q) ≤ ψ(r), since ψ is order preserving. Thus
ψ(q) = ψ(r) = s0 by the minimality of s0 and in fact q = r by hypothesis one.
Then

ϕ(UpU
∗
q )δr = TpT

∗
q Trδe =

{
δp, if q = r,
0, otherwise.

This gives ψ(UpU
∗
q )Ps0 = 0 unless ψ(p) = ψ(q) = s0, so

ϕ
(∑
s∈F

an,s
)
Ps0 = an,s0 Ps0 .

Moreover, if ψ(p) = ψ(q) = s0, then ϕ(UpU
∗
q )Ps0 is the rank one operator (. |δq)δp

on the Hilbert space Hs0 . Hence the map b→ ϕ(b)Ps0 is an injection of Ks0 onto
the closure of the finite rank operators on Hs0 . This map is a ∗-homomorphism,
since given a, b ∈ Ks0 ,

ϕ(a)Ps0 (ϕ(b)Ps0)
∗ = ϕ(a)Ps0 ϕ(b

∗)Ps0 = ϕ(ab∗)Ps0 .
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Thus,

∥an,s0∥ = ∥ϕ(an,s0) = ∥ϕ
(∑
s∈F

an,s
)
∥

as required. ◀

Remark 2. If G in Theorem 1 is abelian, then by [2, Proposition 4.5] there is
a positive, faithful, linear map of C∗(G,P ) onto K which commutes with ΦU .
Then by [2, Proposition 4.2], (G,P ) is amenable. This fact will be useful in the
following section.

4. Some amenable quasi-lattice ordered groups

In this section, we leverage our findings to establish the amenability of abelian
quasi-lattice ordered groups and derive extensions of the theorems of Murphy
and Cuntz. Furthermore, we demonstrate that the results of Murphy and Cuntz
can be seen as specific instances within our broader results in [1, Theorem 3.2,
Theorem 3.6].

Theorem 2. Abelian quasi-lattice ordered groups are amenable.

Proof. Let (G,P ) be an abelian quasi-lattice ordered group. The identity
map ι : G → G is a group homomorphism, and hence by [2, Proposition 4.3]
there is a continuous, faithful linear map Φ : C∗(G,P ) → C∗(G,P ) such that

Φ(UpU
∗
q ) =

{
UpU

∗
q if p = ι(p) = ι(q) = q,

0 otherwise.

= ΦU (UpU
∗
q ).

By linearity and continuity of Φ and ΦU , we have Φ = ΦU . Hence (G,P ) is
amenable. ◀

Recall the following Theorem of Murphy:

Theorem 3. Let G be a totally ordered abelian group with sub-semigroup P =
{p ∈ G : p ≥ 0}. Then there is a representation (A,U) of P by isometries that
has the following properties:

(i) Let (B, V ) be a representation of P by isometries. Then there is a ∗-
homomorphism ϕV : C∗(U) → C∗(V ) such that ϕV (Up) = Vp for each
p ∈ P .

(ii) If Vp is non-unitary for all p ∈ P , then ϕV is an isomorphism.
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Proof. Recall that if a semigroup P induces a total order on a group G,
then any representation of P by isometries is covariant. Thus by [1, Theorem
3.2] there is a representation (A,U) which has the required universal property.
Suppose that Vp is non-unitary for all p ∈ P . Then by section § 4.1 of [1], (B, V )
is true. By Theorem 2 (G,P ) is amenable, so [1, Theorem 3.6] implies that (B, V )
is isomorphic to the universal object. ◀

Recall the following Theorem of Cuntz:

Theorem 4. Given n ∈ N, there is a pairwise orthogonal family of n isometries
X which generates a C∗-algebra C∗(X) with the following properties:

(i) Let C∗(Y ) be the C∗-algebra generated by some pairwise orthogonal family
of n isometries Y . There is a ∗-homomorphism ϕY : C∗(X) → C∗(Y ) such
that ϕY (X) = Y .

(ii) If
∑

V ∈Y V V
∗ < 1, then ϕY is an isomorphism.

Proof. Let (G,P ) be the free product of a family {(Gi, Pi) : i ∈ I}, where
(Gi, Pi) = (Z,N) for all i ∈ I. By [1, Theorem 3.2] there is a universal covariant
isometric representation (A,U) of (G,P ). Recall that the covariance of (A,U)
implies that C∗(G,P ) is generated by the pairwise orthogonal family of isometries
X = {Uai : i ∈ I}.

Moreover, we know that any pairwise orthogonal family of isometries Y =
{Vi : i ∈ I} induces a covariant isometric representation (B, V ) of (G,P ) such
that Vai = Vi. Then, by [1, Theorem 3.2] there is a ∗-homomorphism ϕY :
C∗(G,P ) → C∗(V ) such that ϕY (Uai) = Vai and hence ϕY (X) = Y .

Suppose |I| = n < ∞. Then, if
∑

V ∈Y V V
∗ < 1, (A, V ) is true by [1, §2].

Hence by [5, Theorem 4.4] and [1, Theorem 3.6], ϕY is an isomorphism. ◀
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