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The aim of the presented work was to compare the activities of supernatants collected from Bacillus 

vallismortis strain AZ-130 and B. subtilis strains against Lactococcus lactis subsp. Lactis ATCC 

11454. To achieve the goals, cultures of AZ-130 and B. subtilis and their SN were analyzed for activity 

against Lactococcus lactis subsp. Lactis ATCC 11454 by broth microdilution and growth inhibition 

assay. Based on the obtained results, it was found that strains AZ-130 and B. subtilis have high 

activity in the supernatant against Lactococcus lactis subsp. Lactis ATCC 11454 strain. However, 

given that the inoculation and growth conditions of both strains were the same, the activity of AZ-

130 is significantly (16-fold) higher compared to the supernatant of B. subtilis. The presence of 

activity in the supernatants of AZ-130 and B. subtilis against L. lactis indicates a possible similarity 

of the antimicrobial compound produced by strain AZ-130 with the antimicrobial compounds 

produced by B. subtilis. 

 

Keywords: Antimicrobial activity, bioactive molecules, natural products, pathogenic bacteria 

 

 

INTRODUCTION  

 
The gradual acquisition of resistance by 

microorganisms to clinically used antimicrobial 
drugs represents a serious health problem and 
requires the development of new antimicrobial 
drugs (Armas et al., 2019; Zaman et al., 2017). 
Discovery and research of natural products that 
are produced by various organisms (plants, 
terrestrial vertebrates and invertebrates, marine 
organisms, bacteria and fungi) (Abdel-Razek et 
al., 2020), have provided many active and leading 
structures for pharmaceutical development 
(Schneider, 2021; Atanasov et al., 2021). Natural 
antimicrobials with widely varying chemical 
structures and biological activity play an 
important role in medicine, agriculture, and also 
in the food industry from the point of view of 
food safety from foodborne pathogens (Pham et 
al., 2019). According to Newman and Cragg 70% 
of antibacterial drugs on the market from 1981 to 

2019 are natural products or their derivatives, 
28% - synthetic drugs, 1% - imitation of natural 
products and pharmacophores (Schneider, 2021). 
Microorganisms are the most potential source for 
the production of natural antibacterial drugs 
(Wright, 2014). Isolation, purification and 
identification of natural antimicrobial bioactive 
compounds is a very time-consuming and 
financially demanding process (Ekins et al., 2019; 
Wright, 2018). However, in most cases, at later 
stages of development, it turns out that the 
molecule under study has been previously 
identified. One of the main steps in antimicrobial 
development from natural sources is to include 
dereplication stages in the process to avoid the re-
development of already known compounds 
(Schneider, 2021; Carrano and Marinelli, 2015).  

An AZ-130 strain, isolated from oil 
contaminated soil sample of Azerbaijan, showed 
strong activity against gram-positive opportunistic 
pathogenic S. aureus and E. faecalis strains 
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(Aгаева, 2019; Aghayeva et al., 2021) during 
initial and supernatant screenings. By 16S rRNA 
gene sequencing AZ-130 strain was identified as 
Bacillus vallismortis. Further efforts to 
characterize the AZ-130 bioactive compound 
showed that strain AZ-130 produces a single 
compound with antibacterial activity with a 
retention time at HPLC column 12.854 min 
(Aghayeva et al., 2021). Bacterium B. 
vallismortis, to which strain AZ-130 belongs, is 
very similar to B. subtilis (Roberts et al., 1996; 
Earl et al., 2012). The soil microorganism B. 
subtilis stands out among members of the genus 
Bacillus because it produces many different 
potential antibiotics (Caulier et al., 2019; Stein, 
2005). In addition, B. subtilis produces a number 
of peptide antibiotics, including members of both 
classes: ribosomal synthesized (for example, 
subtilin, subtilosin A (Shelburne et al., 2007) 
ericin A and S, mersacidin, sublancin 168, 
bacillocin 22) (Lawton et al, 2007; Xie et al., 
2009) and several types of non-ribosomally 
synthesized small antibiotic peptides (<2000 Da) 
that exhibit antibacterial and antifungal activity 
(for example, iturin) and lipopeptides such as 
surfactin, fengycin, mycosubtilin, and 
mycobacillin (Li et al., 2009). 

The molecular weight of the AZ-130 
compound is more than 3000 Da (Aghayeva et al., 
2022). One of the antimicrobial compounds 
produced by B. subtilis bacterium with a 
molecular weight above 3000 Dalton is subtilin 
(3321 Da) (Subtilin). It is known, that subtilin, 
produced by B. subtilis inhibits the growth and 
development of L. lactis (Qin et al., 2019; Parisot 
et al., 2008). Since these two strains are closely 
relative to each other and may produce similar 
antimicrobial compounds, the purpose of the 
experiments presented in this work was to 
elucidate the similarities and differences in the 
mechanisms of activity of the antibacterial 
compounds produced by AZ-130 and B. subtilis 
strains against Lactococcus lactis subsp. Lactis 
ATCC 11454. 

 

MATERIALS AND METHODS 

 

The object of study was an AZ-130 

antibacterial compound synthesized by the Bacillus 

vallismortis strain AZ-130 isolated from an oil-

contaminated soil sample of Azerbaijan in 2014.  

The B. subtilis strain was obtained from the 
Fraunhofer Mid-Atlantic Center, USA and 
identified by 16S rRNA gene sequencing as 
Bacillus subtilis ssp. spizizenii str. NBRC 101239. 

50 ml of TB medium was added to two 125 
ml flasks: one for AZ-130, the second for B. 
subtilis. Flasks were inoculated with one colony 
of AZ-130 (or B. subtilis) and incubated at 220 
rpm and 32°C for 24 hours. After the incubation 
time, the culture was centrifuged at 10000 g for 
15 min at 4° C and the supernatant was purified 
from the cell culture by filtration through a 0.22 
μm PES membrane. Culture and supernatant of 
strains AZ-130 and B. subtilis were assayed for 
activity against L. Lactis by the growth inhibition 
assay. The screening was performed by the soft-
agar overlay method as described by Hockett 
(Hockett and Baltrus, 2017; Balouiri et al., 2016) 
with some modifications. For screening, 10 μl of 
material was plated onto an agar plate confluent 
with the indicator strain - Lactococcus lactis subsp. 
Lactis ATCC 11454. The plates were left to dry 
for 5 minutes under a hood and incubated at 37°C 
for 24 hours. The range of antibacterial activity 
(zone of inhibition (ZOI)) was expressed in 
millimeters as the diameter of the transparent 
zone (the zone where the growth of the test 
organism was suppressed).  

To compare the number of inhibitory units 
secreted by strains AZ-130 and B. subtilis over 24 
hours, the collected SNs were diluted and assayed 
against L. lactis by the broth microdilution 
method (Manual…, 2005) according to 
recommendations of the Clinical and Laboratory 
Standards Institute (CLSI). The experiment was 
repeated three times. The supernatant (100 µL) 
was added to the first well of a 96-well plate and 
two-fold serially diluted across the row. Cell 
suspension of Lactococcus lactis subsp. Lactis 
ATCC 11454 (50 µL) was added to each well to 
the final concentration of 5 × 104 cells per well. 
For the positive control (100% growth of the test 
organism), 50 µL of the medium was mixed with 
50 µL of the test organism suspension; pure 
medium without the test organism (100 µL) was 
used as the negative control. The plates were 
covered with a lid and incubated at 37°C for 22-
24 hours in an open bag (to prevent moisture 
loss). After the incubation time, OD was 
measured at 650 nm using a Molecular Devices 
Spectra MaxPlus microplate reader. 
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RESULTS AND DISCUSSION 

 

To determine the similarity/difference in the 

mechanism of activity of the antimicrobial 

compounds produced by strains AZ-130 and B. 

subtilis, SNs of AZ-130 and B. subtilis were 

analyzed for activity against L. lactis.  

As can be seen from Figure 1, AZ-130 and B. 

subtilis show very faint activity in culture against 

L. lactis, while the SN activity of the same 

isolates was quite high: 8 mm – SN of strain AZ-

130 and 5 mm – SN of strain B. subtilis (Fig. 1).  

Based on the results of the growth inhibition 

assay, it is clear that the activity of the AZ-130 

supernatant against L. lactis is higher compared to 

B. subtilis. It should be noted that the inoculation 

and growth conditions for AZ-130 and B. subtilis 

were the same. To be able to compare the number 

of inhibitory units secreted by these strains over 

24 hours, the collected SNs were diluted and 

assayed against L. lactis by the broth 

microdilution method (Fig. 2). 

 

v/f 8	mm

v/f
5	mm

  
 

Fig. 1. Antibacterial activity of AZ-130 and B. subtilis 

cultures and their supernatants against L. lactis. Note: 

v/f - very faint activity. 
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Fig. 2. Antibacterial activity of AZ-130 and B. subtilis cultures and their supernatants against L. lactis. 

Note: v/f - very faint activity. 
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In the figure, the maximum growth of L. 

lactis under the tested conditions (no inhibitor) is 

highlighted in red, the negative control (no 

bacterium) is in purple, the activity of the AZ-130 

supernatant at various dilutions against L. lactis is 

in blue, and the activity of the B. subtilis 

supernatant at various dilutions against L. lactis – 

green. The experiment was carried out three 

times.  

Broth microdilution analysis of the SNs (Fig. 

2) showed that the AZ-130 supernatant 

completely inhibited the growth of the L. lactis 

strain at a 32-fold dilution, whereas the B. subtilis 

supernatant showed activity only at a 2-fold 

dilution. Analysis of the collected SNs by the 

broth microdilution method carried out to 

compare the number of inhibitory units, showed 

that the activity of the SN of strain AZ-130 

against L. lactis was 16 times higher than the B. 

subtilis SN. 

 

CONCLUSION 

 

It has been found that the supernatant of 

strain AZ-130 has a high activity against the 

bacterium Lactobacillus lactis. The similarity in 

molecular mass of the AZ-130 biomolecule with 

subtilin produced by Bacillus subtilis (more than 

3000 Da) and the presence of activity against L. 

lactis indicate the possibility that this 

antimicrobial compound belongs to the same class 

as subtilin, but has a 16-fold higher activity 

compared to subtilin.  
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